Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

This version

1.8.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.8.0-cp310-cp310-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.8.0-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.8.0-cp310-cp310-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.8.0-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.8.0-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.8.0-cp39-cp39-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.8.0-cp38-cp38-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.8.0-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.8.0-cp38-cp38-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9fda45374c4a143fb6cf07aa74a7bda3ec83ddf8fba9809815c927b8e902c9d5
MD5 2c6509d9e72da15aee54aeb47b7ce30e
BLAKE2b-256 b7e8e1df1e09b5a80b33626f41af3a52f28a0c53455742220fd3200700f9109f

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e194e47753f6f01cf64396f4a32b385eb76a2050139eb2fea74d29bd4d249902
MD5 43999fda1139cb4ab80244e242a092c6
BLAKE2b-256 576a50abb7720b84249e10b256a0ad6a4c8d9e82ae0c0b2dabd82d0c14835e9e

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b395f08f1e121a66e76e1dbd224546d1429e692bc9905c734f8d068d2bc3cb3
MD5 14cbb0d8bbbcfec96e3b29c1a0da5edc
BLAKE2b-256 dc6b98d150a9570c8a15ec1d97c384393dfc63d1b842b35811efcdf4c29acf01

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7dd06562d00f6b5bcc40af132074540c57b0dd49d9238fdcd6ae8a3137afd0f6
MD5 be49eda7c08b35319590749cbbc4e2a8
BLAKE2b-256 4338b1f2ae9095054a071f3ea4386f0ad32d4017f4309bb54ce0c2aee89ffacc

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 17165d354b2125d94c08674012b508cf4acaa5307617e979b2cd36a3b3dd211b
MD5 447c708f02c5767f0c0b8142a7cbe79c
BLAKE2b-256 b8d346ed48f2729d0d92a595367ddfe6b3aae2c948f1791be7af6079a334689c

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a932b715af91acabe54de5d3130b89a9a44dd901eb203533a8bf138cce3d3ac
MD5 d15b2af06bd089fe329a76a5ef2e54cd
BLAKE2b-256 08a4c83f69db681d22a15e234f654bc0dc1c70913438633f30472d705feae45a

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 870406db66810296f074c151355d0b2d8cae5c3bda60b43d67a9bdddc152128e
MD5 b3e08fb0d60bb82e0bac2f792501ed0a
BLAKE2b-256 174b91aaf7fd7e9b47584a55020021f0b49ac74f94e2ad70f9e26b0bbec41f7d

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0fa89da7ec5eea0701a4938bd2929849910e17e41d78201ae40d3cbed0426fd2
MD5 9a4e8320e0f3a88f688d3a0e53977810
BLAKE2b-256 21be20f4a1b4a3a75156cd6e8c05f61195615b31dcb82bc302b591a647b0f5c5

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 59db522e18afba5cc150c045c081977f974738f8f7b4cd2c0095ea3ac84577d7
MD5 c2a79079b02de1bac6c1087630450e59
BLAKE2b-256 f7f24693220bdee0a60f9113a75d5d26067c0e5e08b80e57bc6b9b8fd34e137e

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a7461a6076ffa934b7dfe3963187389e88620ed69a530afdf8cbe6238f8fb56
MD5 6217c588921efc77107b7444bb33bd26
BLAKE2b-256 27932604934caf1f5c2edee2d53fc58804ad08b43b7989b7c99d4a3b03ce083a

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a765cb2a8a16aec7a79ff7b1a8677646259739fd0ff4d38bf35ffa841c7428af
MD5 af9eff99e64c810f102fe246c509c744
BLAKE2b-256 7d08cc0cafd5b72df60ccdceee6104faf44fde33505f7e95f22b3f986024731c

See more details on using hashes here.

File details

Details for the file pytket-1.8.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30eab38f4ccd0fd54b765bdb739850157448b6b53e01067297bca973475dbbee
MD5 b0091f063b5df2c6c007af2b35378dbb
BLAKE2b-256 84c08c26b0755a7a436e55e922c78e153eb1cc749844fcef526e9214672aa06d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page