Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

This version

1.8.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.8.1-cp310-cp310-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.8.1-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.8.1-cp310-cp310-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.8.1-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.8.1-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.8.1-cp39-cp39-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.8.1-cp38-cp38-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.8.1-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.8.1-cp38-cp38-macosx_10_14_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2fdb89e1c76b3d57f3617049fdf0b1b518cc75430b022a5014f0602f737cef80
MD5 17093a28fab96ffa4190f1b446d022f7
BLAKE2b-256 3c9e037c27d8c92d8f8fa0c739f301d1124fef1676140e08a5e24c3078b3cb0c

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de82ec2a5c2b915bad0882a7f657eae82f5a23d1177975fb74fab3e7ee102fae
MD5 ee7df3d429b451261c7c600f2e753c35
BLAKE2b-256 ee2612fe814376ea4f97f4a136c0406a245bfc061a58f2990cb3e3d029769e71

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f2a8626ca0a2920fe667e0700c609c783c04a9c0bec3615d8f042744bedf19e
MD5 d83f2295a62ab57cf97e9781275c0b20
BLAKE2b-256 c7e6dca934ced3f1f7a7b372db8414d162e61fa7d6ed75421e7647996c2f957b

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 649ed1a3e05c861257d867509ba466a0d7653a6bbaddc3bdc4a44f2724a9964e
MD5 63802066148d41a8d3d2afa158b072ef
BLAKE2b-256 bced4a809a87c5909698e45cdb246943cdb5ea385c6926c5adff995b2dc52a40

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 36c0ac4f8ae6bb2f067f18a56d879f895a14e103cc04927b67969309beb41a49
MD5 3463875a15f01f53b39827ba4b242df5
BLAKE2b-256 6e196e3399d76f2a807f7573e2dcdeaeb0dc54b74820e305532b9aa24b0b6d45

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 959ca7d619a538f805b3b4077aae5c770ca8e362e82254095e4beb6d6cd57df3
MD5 f5e16d76300b8d3b6183f95b6de106cb
BLAKE2b-256 44ea2da235687ed77955d8cd6010221cf8e51828bd7944824b2e3fb9644dee6a

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e163369aac535636a3d5606e19aee731bded25e4cadc83d6dbf8e4438490f908
MD5 bb56a7ef720838345795caed596a27b1
BLAKE2b-256 af7bc5a9c9f8b7ef3a2943bc9eddff8e4220c88e176e85c35406bef70807eb69

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dcdf8832789be0f2dbde28ce10ab5bdf1142126737eda155190ec91c71b92e72
MD5 92af5c9a36cdc5838f6953c1d40892b0
BLAKE2b-256 3a9dff9dfcc44094fe79bb52ddb463f1a992d78ec6b3a8632643309103c41e7b

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 11c3e9d15866cc5d45566104c8cd7b59ae4afd133caef06308288a0dd494f13a
MD5 d5655a7d529e2ac79d246b07215953af
BLAKE2b-256 d085396b1f36143fdc224ac0c3d1178786d5edf5a83d4ba04fbb504fdf7bb1fc

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d866f1ae88638fdbc7aeb2f1835a584c77662057497431921d0aa7c8ace8eb04
MD5 69a697a48f9cf42bea8bb2cfbb8b9d52
BLAKE2b-256 9bfd30d868fb3df045ba403bbc6304c0a3238ecbeab8628f9362641cea670521

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6adfde1949d02ee37a38333e8a2f50bd2d359a9c17d82073c16d767a580560a
MD5 76a4f2a385edf071710b7b7c3ea81178
BLAKE2b-256 a1ba141ccc0e7ffde3ae705ab4f422c6534bfd0f7a8d36e7c6d850819e74dfb9

See more details on using hashes here.

File details

Details for the file pytket-1.8.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.8.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fc7711803df2bc066aa104e0249ed16d0a2c495121a89f47c1e417da8acacb44
MD5 2554517b63b39edb1235aaadc06b7483
BLAKE2b-256 a2f04525c4770ab6124757a6d89ded8365aeb599137cc7b4023bb4623619201c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page