Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.9.0-cp310-cp310-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.9.0-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.9.0-cp310-cp310-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.9.0-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.9.0-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.9.0-cp38-cp38-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.9.0-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.9.0-cp38-cp38-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 159fd450847b61e61f87b824356aa87f28a9a54600f5b9b398d6b1573549edf6
MD5 b42d1bc52477a1f83f51d82f1fb2a563
BLAKE2b-256 ce763e513cebf92a767d22b20d47c05778c22e7f5c85a1c77e9d807a7cc3508d

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2251c15237ec17b952ad7f01f5f9f9689bee8a8c61995416793201afcc420e17
MD5 736f570a595a6bd57d407ee291821cc2
BLAKE2b-256 ffb394c768173a1c79781a2bcdc28c863ee7bfa4e67c3959865b7d4f4770f287

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f09a89691782a54183e0904776b4462a341fee90ce82a86f62dd25ecdcb57662
MD5 235e99e6017a86d93c35429a8fd15b47
BLAKE2b-256 9fad2c032f75244feb87ee998644a4d5470b791d2039450350d895831782fd46

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 557c050897b1df44631cd7684388f88453f166b6990af342baec9d471b92bbb4
MD5 b85c43f2e74ab0f6f3b964a30f69455e
BLAKE2b-256 c0aac7a98e3b11efbe8b411a998f58def4bb4f5cb8943976bc41cb02c6422587

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6b4b1a7b0213ffec44ca050dc272eb650e10ff877efc20dc68387d0ad88a615b
MD5 090309f297a0eec29e970059ff227d93
BLAKE2b-256 87718e2aacad13dbd41170b8621d384ddc3a72b889ece814228b18aeef84611e

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e5618527ac819da68a113a604e4cc34e8a731a061069d217544a132c9f849e2
MD5 def703b01d320b5569e8afcfe338eb48
BLAKE2b-256 d3023351cc385716c192ea897a87a18eb4c6dea83da14e8f6a2b6b5c006a5337

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6ca8ebfda00ad9c0cc75178586c5c69a4f7ccbbaacdbeda0edc1748012cf57c
MD5 bd2f9e273b100ce6d6949ec0f0954a2e
BLAKE2b-256 90c36ac2a1d431ba4ed9a364ad6c2e243c215bd76b5e8ebb7d16e54a414ed325

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c3fe94148192dcabeac7043c27f5a9cf510c440f26c1b3549281f9898cfc6f07
MD5 45dc5b86d86728172eef3d2a89201a4f
BLAKE2b-256 8e9ca489d94e13f5c0a55ed78e5848cd3981a40c53882c92677d61f40994fa57

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pytket-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4ac2a7e68a627c31a7df9791139c133fd2dfee0c6225c394406061db16202247
MD5 553dbb9ba934a4f6120ac2c61b80867f
BLAKE2b-256 61223f107cfbc55f3b31d796105f17fd59b098121c0ad6df7332f47b68d6d860

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45ea97f235a508c95511d998a30eaa8a8b50f820e0e56eda2cbb8c979be8a740
MD5 98bfbbc3dab5741d7008f088faf08b31
BLAKE2b-256 709b399b5ae8359a2a5fb73b6d2549465ea0c5332bd09b884b33e858d50717db

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d071689b429e53ce202a38a7a7c1589584b12af997d96fc0c884632b6d51e86
MD5 fd6154ce130b10533e10929c3e528f71
BLAKE2b-256 f7c1504d53b82522b1a79ecd927ca91908081aa444a402e317fd8747e846de21

See more details on using hashes here.

File details

Details for the file pytket-1.9.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64dfef4dc21b8cc534fd5fe5507182cca88bb6d4b87bf66bc798403acd6949de
MD5 5daeecab5a407b94e8d02d978549cc18
BLAKE2b-256 5f48910d1b02de460cf788c0ef527fb9f3e179872e327b018848c3b5719304aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page