Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

This version

1.9.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.9.1-cp310-cp310-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.9.1-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.9.1-cp310-cp310-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.9.1-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.9.1-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.9.1-cp39-cp39-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.9.1-cp38-cp38-win_amd64.whl (10.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.9.1-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.9.1-cp38-cp38-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for pytket-1.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fd259b67689a8b163c0ac035d54162b57a650ddc326f775def131d8dc92db772
MD5 0c08c1dea1809fd562996705b7f099a9
BLAKE2b-256 574595c4f23e8a7ed1a411d1f225be83e7ca582c0196e4421ccee4a37139cab4

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84cfda3b06f0f594a5f09d3ff6868698fc6cd45e4ad4f769b8badeac2bc76d11
MD5 600c06b1eae1681b52d62488da207180
BLAKE2b-256 c39ef05d4ca4bbe1f6aba19ff3cd978745b23b3fc6b6a63d59644ade1fe6ec3c

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d36870040f80fc8731f407281ea8b163a3f4e219d3dd18b7da22107aa81525f
MD5 60dd1bc06d283fa49d62976626bb6068
BLAKE2b-256 0a7f85713c1ac83fcd260884ef2953af6a768e62881280cd564c5847bdf9dffd

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d075b8f90197519747b1bb7ee9bf2c51dbf258f1107b80d09e6fdcc92e2c590a
MD5 863c426daeb6b643f0c101afa7e4ca7a
BLAKE2b-256 93df321e31d6f35c6f2beea7cafe6d821d5ed94ac13fe215f1d2fc78732ac9f4

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for pytket-1.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 426828535fd62da1f188d4397df670ad5ba42c420c40cfaef374b6b6e70a7064
MD5 e06f382dcbe4ffce3cc96026a157882a
BLAKE2b-256 0b0f8db0fcfa7fde7115dd5863cd5b1f5533be347fbad99aaa158e2c9fa0a3a5

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe3e9f29b67f37af8f7074e0e29b7bb4eae57b8ce0e5d55c07a35b2ce5e88ec3
MD5 9f67b7fbaf6edb5c7123b5b19b9fd473
BLAKE2b-256 afb3a90467a521d4a0999f3f11fe01bc07dd4d6984ccfdf454f2cf4cd8ab533f

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 765730ca9159aca14017fbb1106fcceb7bbf6e3e87742d83afe5b7d91283fc18
MD5 163506bac41765e68b029ce8210f1300
BLAKE2b-256 4471db45b1ce5c068dd5573e9ae5e74ce290773fac365e8872f21c0da122a7c0

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ef4616bcefae74e22f1ae4016a294b360a089e251df160f856f87dafb32b5a05
MD5 6e3f33cd59c905a95038c1eef55e1e71
BLAKE2b-256 7cec0b13ad395b22865f2d74587a356e17d3d899882282f1655c95976b44991b

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for pytket-1.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 927cb889ee033631ee5f9632f86d516206acef9ae6aaa6d5de1d3cd8e9b4166b
MD5 8ba884542067ed80b5e13c8281ba59a6
BLAKE2b-256 8c6e4cb29d75c5f3cc2e0b1b4fc01f461fa2273039c87997a77d8d0b93ebf65f

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec9343eb60f5ab516ef9a7598defd12f6fd3c09c5df7cd57b08a0890318a556f
MD5 0f644df7476e9da3fec141786325df04
BLAKE2b-256 ee8f8aeaab00a9b2cc0310129cd1bfc6e3cc303d71a8cdec23b82c5d3da689da

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a43f60bf4d5a4e008c7c46ca1cb1414e0de3766b3c671085b62a9b8ce6b53f7
MD5 694077c233f0ebbabda6dd9caaed45e4
BLAKE2b-256 5c1ee4484dd2644d702c6e6013d3f6b7b02898b15c4d52ee45468c9c6925b832

See more details on using hashes here.

File details

Details for the file pytket-1.9.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.9.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 839ed16ecf95fb6b8af2ebff34643013b0dfa0b9c24fb39d85f3d605611e5a77
MD5 6871e1bc742f17cf59340e1dafa99040
BLAKE2b-256 9d7937ffb06f3e79d5dbcec643e46222b02df31e37df30d1ac2a508533d96e46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page