Skip to main content

Package for ML model analysis

Project description


What is Pytolemaic

Pytolemaic package analyzes your model and dataset and measure their quality.

The package supports classification/regression models built for tabular datasets (e.g. sklearn's regressors/classifiers), but will also support custom made models as long as they implement sklearn's API.

The package is aimed for personal use and comes with no guarantees. I hope you will find it useful. I will appreciate any feedback you have.

supported features

The package contains the following functionalities:

  • Sensitivity Analysis: Calculation of feature importance for given model, either via sensitivity to feature value or sensitivity to missing values.
  • Vulnerability report: based on the feature sensitivity we measure model's vulnerability in respect to imputation, leakage, and # of features.
  • Scoring report: Report model's score on test data with confidence interval.
  • Prediction uncertainty: Provides an uncertainty measure for given model's prediction.

How to use:

Examples on toy dataset can be found in /examples/toy_examples/ Examples on 'real-life' datasets can be found in /examples/interesting_examples/

Output examples:

Sensitivity Analysis:

  • The sensitivity of each feature ([0,1], normalized to sum of 1):
 'sensitivity_report': {
    'method': 'shuffled',
    'sensitivities': {
        'age': 0.12395,
        'capital-gain': 0.06725,
        'capital-loss': 0.02465,
        'education': 0.05769,
        'education-num': 0.13765,
  • Simple statistics on the feature sensitivity:
'shuffle_stats_report': {
     'n_features': 14,
     'n_low': 1,
     'n_zero': 0
  • Naive vulnerability scores ([0,1], lower is better):

    • Imputation: sensitivity of the model to missing values.
    • Leakge: chance of the model to have leaking features.
    • Too many features: Whether the model is based on too many features.
'vulnerability_report': {
     'imputation': 0.35,
     'leakage': 0,
     'too_many_features': 0.14

scoring report

For given metric, the score and confidence intervals (CI) is calculated

'recall': {
    'ci_high': 0.763,
    'ci_low': 0.758,
    'ci_ratio': 0.023,
    'metric': 'recall',
    'value': 0.760,
'auc': {
    'ci_high': 0.909,
    'ci_low': 0.907,
    'ci_ratio': 0.022,
    'metric': 'auc',
    'value': 0.907

Additionally, score quality measures the quality of the score based on the separability (auc score) between train and test sets.

Value of 1 means test set has same distribution as train set. Value of 0 means test set has fundamentally different distribution.

'separation_quality': 0.00611         

Combining the above measures into a single number we provide the overall quality of the model/dataset.

Higher quality value ([0,1]) means better dataset/model.

quality_report : { 
'model_quality_report': {
   'model_loss': 0.24,
   'model_quality': 0.41,
   'vulnerability_report': {...}},

'test_quality_report': {
   'ci_ratio': 0.023, 
   'separation_quality': 0.006, 
   'test_set_quality': 0},

'train_quality_report': {
   'train_set_quality': 0.85,
   'vulnerability_report': {...}}

prediction uncertainty

The module can be used to yield uncertainty measure for predictions.

    uncertainty_model = pytrust.create_uncertainty_model(method='confidence')
    predictions = uncertainty_model.predict(x_pred) # same as model.predict(x_pred)
    uncertainty = uncertainty_model.uncertainty(x_pred)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pytolemaic, version 0.5
Filename, size File type Python version Upload date Hashes
Filename, size pytolemaic-0.5-py3-none-any.whl (40.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size pytolemaic-0.5.tar.gz (25.6 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page