Skip to main content

Package for ML model analysis

Project description

Unittests

Pytolemaic

What is Pytolemaic

Pytolemaic package analyzes your model and dataset and measure their quality.

The package supports classification/regression models built for tabular datasets (e.g. sklearn's regressors/classifiers), but will also support custom made models as long as they implement sklearn's API.

The package is aimed for personal use and comes with no guarantees. I hope you will find it useful. I will appreciate any feedback you have.

Install

Pytolemaic package may be installed using pip:

pip install pytolemaic

supported features

The package contains the following functionalities:

On model creation

  • Dataset Analysis: Analysis aimed to detect issues in the dataset.
  • Sensitivity Analysis: Calculation of feature importance for given model, either via sensitivity to feature value or sensitivity to missing values.
  • Vulnerability report: Based on the feature sensitivity we measure model's vulnerability in respect to imputation, leakage, and # of features.
  • Scoring report: Report model's score on test data with confidence interval.
  • separation quality: Measure whether train and test data comes from the same distribution.
  • Overall quality: Provides overall quality measures

On prediction

  • Prediction uncertainty: Provides an uncertainty measure for given model's prediction.
  • Lime explanation: Provides Lime explanation for sample of interest.

How to use:

Get started by calling help() function (Recommended!):

   from pytolemaic import help
   supported_keys = help()
   # or
   help(key='basic usage')

Example for performing all available analysis with PyTrust:

   from pytolemaic import PyTrust

   pytrust = PyTrust(
       model=estimator,
       xtrain=xtrain, ytrain=ytrain,
       xtest=xtest, ytest=ytest)

   # run all analysis and get a list of distilled insights",
   insights = pytrust.insights()
   print("\n".join(insights))

   # run all analysis and plot all graphs
   pytrust.plot()

   # print all data gathered
   import pprint
   pprint(report.to_dict(printable=True))

In case of need to access only specific analysis (usually to save time)

   # dataset analysis report
   dataset_analysis_report = pytrust.dataset_analysis_report

   # feature sensitivity report
   sensitivity_report = pytrust.sensitivity_report

   # model's performance report
   scoring_report = pytrust.scoring_report

   # overall model's quality report
   quality_report = pytrust.quality_report

   # with any of the above reports
   report = <desired report>
   print("\n".join(report.insights()))

   report.plot() # plot graphs
   pprint(report.to_dict(printable=True)) # export report as a dictionary
   pprint(report.to_dict_meaning()) # print documentation for above dictionary

Analysis of predictions


   # estimate uncertainty of a prediction
   uncertainty_model = pytrust.create_uncertainty_model()

   # explain a prediction with Lime
   create_lime_explainer = pytrust.create_lime_explainer()

Examples on toy dataset can be found in /examples/toy_examples/ Examples on 'real-life' datasets can be found in /examples/interesting_examples/

Output examples:

Sensitivity Analysis:

  • The sensitivity of each feature ([0,1], normalized to sum of 1):
 'sensitivity_report': {
    'method': 'shuffled',
    'sensitivities': {
        'age': 0.12395,
        'capital-gain': 0.06725,
        'capital-loss': 0.02465,
        'education': 0.05769,
        'education-num': 0.13765,
        ...
      }
  }
  • Simple statistics on the feature sensitivity:
'shuffle_stats_report': {
     'n_features': 14,
     'n_low': 1,
     'n_zero': 0
}
  • Naive vulnerability scores ([0,1], lower is better):

    • Imputation: sensitivity of the model to missing values.
    • Leakge: chance of the model to have leaking features.
    • Too many features: Whether the model is based on too many features.
'vulnerability_report': {
     'imputation': 0.35,
     'leakage': 0,
     'too_many_features': 0.14
}  

scoring report

For given metric, the score and confidence intervals (CI) is calculated

'recall': {
    'ci_high': 0.763,
    'ci_low': 0.758,
    'ci_ratio': 0.023,
    'metric': 'recall',
    'value': 0.760,
},
'auc': {
    'ci_high': 0.909,
    'ci_low': 0.907,
    'ci_ratio': 0.022,
    'metric': 'auc',
    'value': 0.907
}    

Additionally, score quality measures the quality of the score based on the separability (auc score) between train and test sets.

Value of 1 means test set has same distribution as train set. Value of 0 means test set has fundamentally different distribution.

'separation_quality': 0.00611         

Combining the above measures into a single number we provide the overall quality of the model/dataset.

Higher quality value ([0,1]) means better dataset/model.

quality_report : { 
'model_quality_report': {
   'model_loss': 0.24,
   'model_quality': 0.41,
   'vulnerability_report': {...}},

'test_quality_report': {
   'ci_ratio': 0.023, 
   'separation_quality': 0.006, 
   'test_set_quality': 0},

'train_quality_report': {
   'train_set_quality': 0.85,
   'vulnerability_report': {...}}

prediction uncertainty

The module can be used to yield uncertainty measure for predictions.

    uncertainty_model = pytrust.create_uncertainty_model(method='confidence')
    predictions = uncertainty_model.predict(x_pred) # same as model.predict(x_pred)
    uncertainty = uncertainty_model.uncertainty(x_pred)

Lime explanation

The module can be used to produce lime explanations for sample of interest.

    explainer = pytrust.create_lime_explainer()
    explainer.explain(sample) # returns a dictionary
    explainer.plot(sample) # produce a graphical explanation    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytolemaic-0.12.13.tar.gz (65.2 kB view details)

Uploaded Source

Built Distribution

pytolemaic-0.12.13-py3-none-any.whl (92.9 kB view details)

Uploaded Python 3

File details

Details for the file pytolemaic-0.12.13.tar.gz.

File metadata

  • Download URL: pytolemaic-0.12.13.tar.gz
  • Upload date:
  • Size: 65.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for pytolemaic-0.12.13.tar.gz
Algorithm Hash digest
SHA256 bef370bebfe136568540c03b0918e08ee5953782b5faa8f184868dfaebf56cc2
MD5 167cc620b04bf3cd45d3306f7430423a
BLAKE2b-256 e0f1ded9cf5e9c0b4a005772d2af1d28063990c6be33211f6311a2474fc71194

See more details on using hashes here.

Provenance

File details

Details for the file pytolemaic-0.12.13-py3-none-any.whl.

File metadata

  • Download URL: pytolemaic-0.12.13-py3-none-any.whl
  • Upload date:
  • Size: 92.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for pytolemaic-0.12.13-py3-none-any.whl
Algorithm Hash digest
SHA256 3278ab13c99dc9ddbef2ad9d8b84256854afdc1cd3b3502a9957b15294f35b33
MD5 5b47e3aaf94c562b3bc62b42a1ef95e7
BLAKE2b-256 e659efd5a1ca6d2ca44a704e12ebb95371f25b1966339efcca3c9873b637e282

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page