Skip to main content

Package for ML model analysis

Project description

Unittests

Pytolemaic

What is Pytolemaic

Pytolemaic package analyzes your model and dataset and measure their quality.

The package supports classification/regression models built for tabular datasets (e.g. sklearn's regressors/classifiers), but will also support custom made models as long as they implement sklearn's API.

The package is aimed for personal use and comes with no guarantees. I hope you will find it useful. I will appreciate any feedback you have.

Install

Pytolemaic package may be installed using pip:

pip install pytolemaic

supported features

The package contains the following functionalities:

On model creation

  • Dataset Analysis: Analysis aimed to detect issues in the dataset.
  • Sensitivity Analysis: Calculation of feature importance for given model, either via sensitivity to feature value or sensitivity to missing values.
  • Vulnerability report: Based on the feature sensitivity we measure model's vulnerability in respect to imputation, leakage, and # of features.
  • Scoring report: Report model's score on test data with confidence interval.
  • separation quality: Measure whether train and test data comes from the same distribution.
  • Overall quality: Provides overall quality measures

On prediction

  • Prediction uncertainty: Provides an uncertainty measure for given model's prediction.
  • Lime explanation: Provides Lime explanation for sample of interest.

How to use:

   pytrust = PyTrust(
       model=estimator,
       xtrain=xtrain, ytrain=ytrain,
       xtest=xtest, ytest=ytest)

   # dataset analysis report
   dataset_analysis_report = pytrust.dataset_analysis_report

   # feature sensitivity report
   sensitivity_report = pytrust.sensitivity_report

   # model's performance report
   scoring_report = pytrust.scoring_report

   # overall model's quality report
   quality_report = pytrust.quality_report

   for report in [dataset_analysis_report, sensitivity_report, scoring_report, quality_report]:
       report.plot() # plot graphs
       pprint(report.to_dict(printable=True)) # export report as a dictionary
       pprint(report.to_dict_meaning()) # print documentation for above dictionary


   # Insights & issues discovered in your data/model
   insights = pytrust.insights

   # estimate uncertainty of a prediction
   uncertainty_model = pytrust.create_uncertainty_model()

   # explain a prediction with Lime
   create_lime_explainer = pytrust.create_lime_explainer()

Examples on toy dataset can be found in /examples/toy_examples/ Examples on 'real-life' datasets can be found in /examples/interesting_examples/

Output examples:

Sensitivity Analysis:

  • The sensitivity of each feature ([0,1], normalized to sum of 1):
 'sensitivity_report': {
    'method': 'shuffled',
    'sensitivities': {
        'age': 0.12395,
        'capital-gain': 0.06725,
        'capital-loss': 0.02465,
        'education': 0.05769,
        'education-num': 0.13765,
        ...
      }
  }
  • Simple statistics on the feature sensitivity:
'shuffle_stats_report': {
     'n_features': 14,
     'n_low': 1,
     'n_zero': 0
}
  • Naive vulnerability scores ([0,1], lower is better):

    • Imputation: sensitivity of the model to missing values.
    • Leakge: chance of the model to have leaking features.
    • Too many features: Whether the model is based on too many features.
'vulnerability_report': {
     'imputation': 0.35,
     'leakage': 0,
     'too_many_features': 0.14
}  

scoring report

For given metric, the score and confidence intervals (CI) is calculated

'recall': {
    'ci_high': 0.763,
    'ci_low': 0.758,
    'ci_ratio': 0.023,
    'metric': 'recall',
    'value': 0.760,
},
'auc': {
    'ci_high': 0.909,
    'ci_low': 0.907,
    'ci_ratio': 0.022,
    'metric': 'auc',
    'value': 0.907
}    

Additionally, score quality measures the quality of the score based on the separability (auc score) between train and test sets.

Value of 1 means test set has same distribution as train set. Value of 0 means test set has fundamentally different distribution.

'separation_quality': 0.00611         

Combining the above measures into a single number we provide the overall quality of the model/dataset.

Higher quality value ([0,1]) means better dataset/model.

quality_report : { 
'model_quality_report': {
   'model_loss': 0.24,
   'model_quality': 0.41,
   'vulnerability_report': {...}},

'test_quality_report': {
   'ci_ratio': 0.023, 
   'separation_quality': 0.006, 
   'test_set_quality': 0},

'train_quality_report': {
   'train_set_quality': 0.85,
   'vulnerability_report': {...}}

prediction uncertainty

The module can be used to yield uncertainty measure for predictions.

    uncertainty_model = pytrust.create_uncertainty_model(method='confidence')
    predictions = uncertainty_model.predict(x_pred) # same as model.predict(x_pred)
    uncertainty = uncertainty_model.uncertainty(x_pred)

Lime explanation

The module can be used to produce lime explanations for sample of interest.

    explainer = pytrust.create_lime_explainer()
    explainer.explain(sample) # returns a dictionary
    explainer.plot(sample) # produce a graphical explanation    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytolemaic-0.12.3.tar.gz (59.7 kB view details)

Uploaded Source

Built Distribution

pytolemaic-0.12.3-py3-none-any.whl (87.0 kB view details)

Uploaded Python 3

File details

Details for the file pytolemaic-0.12.3.tar.gz.

File metadata

  • Download URL: pytolemaic-0.12.3.tar.gz
  • Upload date:
  • Size: 59.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for pytolemaic-0.12.3.tar.gz
Algorithm Hash digest
SHA256 ced7c93c8709835b4d64bb26d7ecd68c591383330eef1ce2b102419444282a12
MD5 fb5d58f9e6c8c024ec60b805c56efed6
BLAKE2b-256 67e507642c521ae72eacb41b14334b0ff1313b873147d748bbb330f90c781922

See more details on using hashes here.

Provenance

File details

Details for the file pytolemaic-0.12.3-py3-none-any.whl.

File metadata

  • Download URL: pytolemaic-0.12.3-py3-none-any.whl
  • Upload date:
  • Size: 87.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1

File hashes

Hashes for pytolemaic-0.12.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e4671158a575780e73901edd6e532cf0c3204aa2a1ff4edcab3f1deb87f44169
MD5 56a8860961cb87a1df4e501f32ceb255
BLAKE2b-256 474ba0e5f387f864c68ae16e52394b6112f4c1a2422daef3807f88e99f014479

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page