Skip to main content

A python wrapper for toml++

Project description

pytomlpp

Build Status Conda Status PyPI version

This is an python wrapper for toml++ (https://marzer.github.io/tomlplusplus/).

Some points you may want to know before use:

  • Using toml++ means that this module is fully compatible with TOML v1.0.0.
  • We convert toml structure to native python data structures (dict/list etc.) when parsing, this is more inline with what json module does.
  • The binding is using pybind11.
  • The project is tested using toml-test and pytest.
  • We support all major platforms (Linux, Mac OSX and Windows), for both CPython and Pypy and all recent Python versions. You just need to pip install and we have a pre-compiled binaries ready. No need to play with clang, cmake or any C++ toolchains.

Example

In [1]: import pytomlpp                                                                                                                                                                                                                                                                            

In [2]: toml_string = 'hello = "世界"'                                                                                                                                                                                                                                                             

In [3]: pytomlpp.loads(toml_string)                                                                                                                                                                                                                                                                
Out[3]: {'hello': '世界'}

In [4]: type(_)                                                                                                                                                                                                                                                                                    
Out[4]: dict

In [6]: pytomlpp.dumps({"你好": "world"})                                                                                                                 
Out[6]: '"你好" = "world"'

Why bother?

There are some existing python TOML parsers on the market but from my experience they are implemented purely in python which is a bit slow.

Parsing data.toml 1000 times:
  pytomlpp:   0.914 s
     rtoml:   1.148 s ( 1.25x)
     tomli:   4.850 s ( 5.30x)
     qtoml:  11.882 s (12.99x)
   tomlkit:  72.140 s (78.89x)
      toml: Parsing failed. Likely not TOML 1.0.0-compliant.

Test it for yourself using the benchmark script.

Installing

We recommend you to use pip to install this package:

pip install pytomlpp

You can also use conda to install this package, on all common platforms & python versions. If you have an issue with a package from conda-forge, you can raise an issue on the feedstock

conda install -c conda-forge pytomlpp

You can also install from source:

git clone git@github.com:bobfang1992/pytomlpp.git --recurse-submodules=third_party/tomlplusplus --shallow-submodules
cd pytomlpp
pip install .

Alt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytomlpp-1.0.12.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

pytomlpp-1.0.12-pp39-pypy39_pp73-win_amd64.whl (183.1 kB view details)

Uploaded PyPy Windows x86-64

pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (226.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (155.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pytomlpp-1.0.12-pp38-pypy38_pp73-win_amd64.whl (183.1 kB view details)

Uploaded PyPy Windows x86-64

pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (226.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (155.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pytomlpp-1.0.12-pp37-pypy37_pp73-win_amd64.whl (182.9 kB view details)

Uploaded PyPy Windows x86-64

pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (214.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (228.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (155.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pytomlpp-1.0.12-cp311-cp311-win_amd64.whl (183.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp311-cp311-macosx_11_0_arm64.whl (166.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pytomlpp-1.0.12-cp311-cp311-macosx_10_9_x86_64.whl (176.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pytomlpp-1.0.12-cp311-cp311-macosx_10_9_universal2.whl (344.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.12-cp310-cp310-win_amd64.whl (183.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp310-cp310-macosx_11_0_arm64.whl (166.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytomlpp-1.0.12-cp310-cp310-macosx_10_9_x86_64.whl (176.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pytomlpp-1.0.12-cp310-cp310-macosx_10_9_universal2.whl (344.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.12-cp39-cp39-win_amd64.whl (183.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp39-cp39-macosx_11_0_arm64.whl (166.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytomlpp-1.0.12-cp39-cp39-macosx_10_9_x86_64.whl (176.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pytomlpp-1.0.12-cp39-cp39-macosx_10_9_universal2.whl (344.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.12-cp38-cp38-win_amd64.whl (183.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp38-cp38-macosx_11_0_arm64.whl (166.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytomlpp-1.0.12-cp38-cp38-macosx_10_9_x86_64.whl (176.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pytomlpp-1.0.12-cp38-cp38-macosx_10_9_universal2.whl (344.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.12-cp37-cp37m-win_amd64.whl (184.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp37-cp37m-macosx_10_9_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pytomlpp-1.0.12-cp36-cp36m-win_amd64.whl (190.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pytomlpp-1.0.12-cp36-cp36m-macosx_10_9_x86_64.whl (175.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pytomlpp-1.0.12.tar.gz.

File metadata

  • Download URL: pytomlpp-1.0.12.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytomlpp-1.0.12.tar.gz
Algorithm Hash digest
SHA256 039071089c140610f7d4c4ee34b446574e9d6913af43c124280b8b080c5be891
MD5 935cbcb21947bf3453ff63495dee5d8e
BLAKE2b-256 0dc4ece2c9203a4f516a8c321feb269066390dc2cd0d527b29d4aed13a4f78ec

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 030df448fa21bb2a48524c1f79b1e7db7f836de0469e755251feabfda3c81753
MD5 3c1f662ec39a753468273daac80f5634
BLAKE2b-256 f86de338c65de8b3d163aa2546a071eed3b26ee5937e2dbd0cfea3c8dd108c89

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0e14cbf3f144c011caf7972ac9e0202494ea1a0ded110dbee87d4bef543f717
MD5 11837b862ae00fb35bef61830d821287
BLAKE2b-256 83182e6568cb03c987dc2e68e9e7107fc36c1daf6be3fa008f2de97920f0af7c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0dba06ccffa220226e1787199bfd8117ac6b85de4d608e7ecfaca29535a32202
MD5 9e712a183759b52e703422b6b511624f
BLAKE2b-256 f346eb4ead0e9dfaef38298735843f61f9237c92e43d5ed662226f7169c46bbd

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4111dd61ebed2510abe9642a6afc201837582f49d9ed010824ee42dad7894d3
MD5 a8e00eaa194df75707cca554a98953c0
BLAKE2b-256 db05e02d57d9c7e0db309147e40a60bf0ff7b16c5cf27923d93d50873b1fbb27

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dbcb85dc020de37b0704aaef51ec2262422e4eea84679267212feb071be49f85
MD5 795e528579bf069191ac17499aa44943
BLAKE2b-256 0f1f9c5ab2390ccda143e9020b1ea232304e4eb37d03af55172f9111440b9251

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bac9492fedbd2931d7482e4c50d011cbaff2076ef0093b16c3656057d477cc0a
MD5 84d8068ed6af7dc65023eb3b0cdacb71
BLAKE2b-256 feff18fb38d03903e21a05981c2edec97a8cf8c71188c0bdef95f5e7135473c1

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6b2da18aca2a064f9a3ca6c93e0aaa97e05ef7554bcaecd007dca11930e12e11
MD5 f7be820a2005f393f9ffa71a210e5ad9
BLAKE2b-256 1b1d18e18dd5f91a494d848e14b325fa356ebd40fc5b16acb3a4bcadf04ccda7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3943d1286120f079644101102dd518112741e3decaa5488dda4485345c299bfb
MD5 6af32c9d4002b3333cc1190b798a8e4d
BLAKE2b-256 13ff28acd60787ccc3e94f97c663ec3e55f68f22698df58b720dade31e582f16

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e66c10a803040324dac9646f4f8e0e7a635cef0484fd72dca8b627f284dca954
MD5 501206a9bbb99f5882e0c632a1f6e527
BLAKE2b-256 c360a9fc9bce461fdee30f1f988597379bda02968174a35ae8581e88c6d0534c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89247bcf57a94ba2e5c5a2e5e1f35f14e479e95c58f7b039045531ae3205034d
MD5 0bfdfd9c93665c0df354a3d229789c19
BLAKE2b-256 b8a772f5519b363212cd71bacd999514b9803f84fe0b211239f78bd45697cd69

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cc3070542c644b504bb3b3eaba205604f687aaf2e09221b97d5c4e079baa6736
MD5 5d8a0fb4680ffbf9df3208a5ce45936e
BLAKE2b-256 e29f7c2f14031a6c21ca1bb2110dff2ddc191e10dce9c53943e3eb29a9fd8cfb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d401fc0f031ede54cf30ea37968feffadba8397c59232bf2c4f593f5915f6a0a
MD5 144ff8357b341816c83e771b502f70ce
BLAKE2b-256 e783567dbb8121ff0fb7738b1deb9e47c23a4b3b188f8ff23e28876c8c267ca2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 13989fef212a499927e8bf6fb70f76e3428be2f41164fcc4cac73b7296573496
MD5 1f2d99070478890a2c2ce80813ea44a5
BLAKE2b-256 23df032b6775df062680126c89c0d4e8caccaee8a19e9b4d0a7325238d5d4e61

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88306546b9ebbb929608d81e896f2e7db92ede5e192e74d7749c33312f723cd6
MD5 f156756ddee5d9754e86ebc7ffc80baf
BLAKE2b-256 72dee56f4fb6cfac564068af7521a9ec5e461ec64dfe61ae1ea7bca35186888d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 48e1ae37ec62448d8a2818938b927ecc5df6414dc6f4ab9c5d02a5736a40f2a7
MD5 bb4a11eeda7baa16891bf81186d6e2de
BLAKE2b-256 3857a37e8333cffec009cdb1d4d84971ea791769595bfb966c041d710ea8c96a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a17aa843a249bdab95d2243c90d1532d2223a8711ae41a1a557e8b1b0467e8d
MD5 367f1a33a799a05dd488649537742890
BLAKE2b-256 b86d13b1b238801db7ee5fa211acaeede211f1115768d4b61bb4be177a17d213

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ca56cc8d14e4b2ccc5112ab55256d1dc8654e10402eb519f83c75c5ad0dbf0e
MD5 769f6fe06657f45daeb3c7a2f9065b56
BLAKE2b-256 a206a1554379430622be4479ac916645ed4843942739e547815cb75048b8a1ad

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0836d96f94705af5366257e15c94f988a7ed14181b5e9c973ebacb923efff84
MD5 7bec0972e55c644f67371e022ac73f13
BLAKE2b-256 d18cf610d069ced895bcf034ca2e31cdc80ae94748c94ba78dde2b6b3c87145c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47c1ad1befadd48d8dc13ddac5b26dbe1afcf2a6f42b7bd7844a4b5a8fad4b39
MD5 ceb0644767e9ec61b1be30ddcf214a9e
BLAKE2b-256 731915d8eeb11241b341e63d0758a2c1694c666d609cf6bafccd6e52d54e38bd

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b749ee3ff8c1912d71b2dc484a75843199293c4cad1fff4720b8230d659390d3
MD5 97fabb4c063ff7dcd36a21563d244786
BLAKE2b-256 e8743b6f37f9202287ee36a4c90c1f6cc4f6dffc612985ff8dd532bbc7fd796e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d6711c94849ab1e88501e6504a354772599dca0f046133ee6d3142d15078769
MD5 c27add8153ef4b5c140c705e9e781e61
BLAKE2b-256 76e9178e7b40ba91c99f28eaa6337167f96bd72ad81a0340b85544bf5024b650

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 918cd34ab3fa4d2b3a15bac81df32724d9fd7590e872b28cc5d8ec88c20b8e5e
MD5 f682989e54fce1b3b38998fff441bdd2
BLAKE2b-256 faba82579ba87a03369598881e24e053787d030df7c49ce9f17ca2880f5285f7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ae164fa65a506bf17071ad69e042eb8d5c6676d13351a1deee9819822411e056
MD5 294105588584bb88cde4df2c65769d8b
BLAKE2b-256 7e0bc0a30f31c0e09805ec7656871ac4b60338ba9ca47f88c33f30fb88bfd283

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a86209916a04300ed3e8856d54b8ceb10dab1be128455d91795b72a8d5557eb4
MD5 e827dde7265c5b7fb76d4c229155b973
BLAKE2b-256 0593cb971956f10040331fa6101df96eac10acedba9bac500a365c8a03fadc06

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1d17e7704cb75f04f221db688f6080c935da88f93de93163257710f8bfaa1bc5
MD5 b733a179bc51a73b70e5dad014f7c5b7
BLAKE2b-256 072f635fbc7b85921d4c7e900d286a6d2bd424089c43ae62065bed4a69e1a962

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0febf4582a70c0266fdd9a8199c23becc8bc98746aa3e68bf24c89a5b5ddb791
MD5 abe76e3d3e4f3d3cc1cffbef9ec109ae
BLAKE2b-256 aa45d5f1b9a18a40eb23ba07b28a4e4082636caaa753beba6c5c8a41f1d738e5

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 869162a54d687b236cbbb0a1d36666bbe9a0ffffa9a190bc8e158c9ec178f623
MD5 28309ad404eb15727c9568f1fc57ad3a
BLAKE2b-256 75f26fe8811199abde93bc0e3488494e8e91bc18f042c3f9760168ca5f7fb230

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 43287fdd30c9f90e8a4d5f1634c70ebb697ff15c11311a4d35d5351a77e43bfc
MD5 565dc071331bdf2881269534852b8a15
BLAKE2b-256 85995400f6251ac4a30e4cbd2cea279283b8b614d7dc9c16df05dbe51c2119aa

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 183.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ad257a5325bcc0a164174117275eb774eb4e2b57c9c9138258b650f381f69a6
MD5 c121a2351ea33fa15c5e84e533c18f90
BLAKE2b-256 1b7693e8c83c28d820ab50ca0ddc00a2754ed8b9f924ee626a9a3d89f4b1e265

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d64a71bb7f3876eba8cf2fa883f9cbb5374312533f41d11d0d823779833b21a0
MD5 ee6099e7021300f5f22a63db66f9e310
BLAKE2b-256 3667124942ae84f20d11014f0f77623e354dd2da814c02b00096c74c4a0119f3

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e50ef94c50898533189768732a112d0257c203081343c7272b1e6566ffbc7321
MD5 7febdc87943c7c71eb4b1e3477a644f0
BLAKE2b-256 af1bd310bd4af8b6387e3c65719ec4a246ec96aa4110de15099315121b911af9

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d51893b60900214726b87024e7b4dddf3e1573c3c38706ab995fcb16ba04f47
MD5 c88ba05495bef04465ef71d76cdce0ea
BLAKE2b-256 99da92f61ca9e93f26bf28e8692596c0980752e9d5084a9690db8d430a218bfb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c57c7a328540e15f8e1a7b8349b4d94e085485609ce06b8c5dab67c834c7d093
MD5 c1c60e7c06c255ff999f41fb39381748
BLAKE2b-256 98f4fb379b34ecabe7b6abd914f0d84eb42ac9b439175d664b4d973edf3c0513

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b5febc0003203f95b7b55771bf7adeceb6b4d85d171bc525969ced01f003cbf
MD5 5159088bddf7c5891251bcc892988ba9
BLAKE2b-256 c4289b7386feb4a168c08a8e3acd0443d1bcb0c8223a13070f9d54698fd33dcd

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 139e6b5d20bb955b9aa7dd6b492ff3e94d656aa960a6da017fe7703f690bd82f
MD5 df6f46888bbc30579e155fdf40222684
BLAKE2b-256 fe04d8b35ccaa85a075c3bce1476a8697c04506b367acf538f9336416d2be55d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7e6ee52f3f107c9463f9822bedb73b73b8922d1f7bc57269e35f53dbfe9ee0f1
MD5 80f8cd1d6e9ebf089816340b23aead49
BLAKE2b-256 3eea3ebc09f332a822e766f457fad790ae19c2f0d7842182f2f721f48a5f52b2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 183.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c629ceb4aa55940e721007101c8c538369d1e8d048fc66796927babcaf57caf7
MD5 f8292b4763045348dd022b1e853c300d
BLAKE2b-256 9412958a97bc657c8735974bb883ba7f4ac2dcc43791b00972b09d33eb41536d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db16a18c36893650516ff2d1184606ec81db113b27dcbcb172712c71fcafabb6
MD5 338092522fadb26b40cb6c20eaa46d16
BLAKE2b-256 a2824b0550919491b2b304e07c784c4c8acca5b98a1fec3ad40adab50ab557c2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4ea18146180950f2cbd06d923d30528e45e3b3021c6d23b933768fb585653777
MD5 39aaf4cd7d03ff4192416bffd1470125
BLAKE2b-256 7e9ad07f3dcf14ed6ff79f748d91e16d4407c510ebd2608624f8d76a6a1dcf5d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6966acfcd8c46a59c2ec044df8101f0d62a200cf4e53d5801a745c3e8938bc0
MD5 870fabfc03ad16615825eb67e8956b69
BLAKE2b-256 271736e07008632265956334f1d3da33efc446ef3eb46386077680072a98c979

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ec28fd551c1953089be4776dadc671162dffa5ab08efe89f995414a365811c9
MD5 6075050dbd2aad355f27f02e04f32564
BLAKE2b-256 9f50ee27cc6b096083a0a3e413f30fb1a682906cd22de28a88082758967dac44

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d6f21ee29efcd30bf85a5d1e25055599412940ff3b1773d991a2af387c824047
MD5 b24c9c2ea2266249b2a76297a3b57349
BLAKE2b-256 cb5a27de89c394146e3b28b4ec058815334e838d58bab9d941953d3f9626f398

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54fdbb023426087a4934356ca558842fec3112b409592d7fc1fcbf1060609618
MD5 93b07585e8911c57ac8ed9d094e69d4d
BLAKE2b-256 defc66bf3db3f3de487ebf2ffbfc5a6ade95d69220cc04c50da00fa56388ad2f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e07a2928a1cedd969fce4e1ac1764a3573b54b48d101b74b2fa9d1c011cd1870
MD5 9182e013bee81ae4e8bc0cf1795a2f9a
BLAKE2b-256 3d57a840ed1bd9abebe54a4199764ebb0dc9a00795ddc19d15ce99b47b7b4b61

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 184.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e534581005c57d1cee57e6f6106e92da7c68a7908a4c14a2571ba7fe6dd580a0
MD5 41eb82df493bbb3969f996c6dae7f10b
BLAKE2b-256 cac7fbb39896c57e9ad0b4ec15410ae1487b412f408f02c3d4c259f2cef4ca06

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d2f6d2e22a99ebcddb98057886ff0e1e7ae561040f33f468c0fa7e1ceb5c574
MD5 8ee8d49c72b10206a3a91e62039f4ba2
BLAKE2b-256 476cf7bd8e0fefaa2ca975c5100f2f0ddfdfb2b33dc5c4e735942990d91c521e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6a81ed11ab4e51d288f6215ec37efc7776f08377dc39b481ee1df42892b82874
MD5 4060c215ac748d3d63c95dfcf4746c20
BLAKE2b-256 f2be45e8ca7d19feccdaf37e2d2b4fd901ca4d3abc651e3332d1a4e2b23479a9

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b41488626518c95075a396f45560b6dd991781b4d99f29e8bf1a959de31fdb6
MD5 339ede4357f5964bde90db34720b9bf2
BLAKE2b-256 b6eda9fda6b3a386d55a3f736abd49cb6b32252b7b47c48a8ad39e07d52f3eed

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 108a7d95c0ee1c10ac0d01aaea4f7183dd15a2e757f79f4976173eaf4dc108f1
MD5 230c02e9fee414253089b42d295d4e03
BLAKE2b-256 95e31ebf77fbe8b84275a17184de7a327ec3e0f74c2af4b2e52095cea3b1665f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b6fa079ce402795afc1e51f4431ab64f2122759cc00cb459369ed662b0fc5a2
MD5 f169210428fdb6220ef82e918cda6b27
BLAKE2b-256 dcbe1653343681b3d3cf2c8a11158506b9ac3a98c7c45dc2a784a1d8dee4e44c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fe99e307821208ac21b53fcabeeb6c95c29ddc2657ffb64d53d5be26ee44eefd
MD5 3759e53ebeccb1a276348fb6d6023891
BLAKE2b-256 f9ed60c0d4961be7c6cf45e6a97b6dd736e8663d6aeeb0f0af5f04fc8f7e1d2a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 293c24e0141024bf3130f7dd118eae6962e945ed55bc8f05e1f9320251701dd8
MD5 ccd3bee26a993b05037e26900163aa5f
BLAKE2b-256 395b740f3fb7920ac1737ca1e501ee4cce09abbbc1f75e5acf7222d1c49e3947

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8aed1f28e9584865296b4fa3d1fa9efbe22525849bb928f3e70bcf44f32c78e0
MD5 c585c2b5490843d5d1300b00c35724f0
BLAKE2b-256 bc2ad8406622ea6bf3f584c6276e82a95623fa9c176ebae465fc4674f7420f6b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4442e8a521ebfdb017046801f132c449c94d1a0ec8369facdf9cf836e427cfa
MD5 1e1be93fe425b880579a57a4994ea60e
BLAKE2b-256 77ea7b0318a2297537111cdc8b57dbf4a1ae5b6426bf528c0973e7806ca1efda

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e6086ce54c2df71a9f9f89e7b1f86dcc29439ae2b308f751bdc70a8dea6c82fd
MD5 f9624bc3ae4472f51a71a5dee0415cae
BLAKE2b-256 41c564a6b1ff6a4792e6ced182aa750255cdf4eac7f78fc123f34dd9f8f5ecc0

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.12-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.12-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d7340b35b092f91a7847279b393735f113113b69eeedd1433b8fe079460c2de
MD5 c9facad17c17d65baafafb46addea851
BLAKE2b-256 5e1e3596f5b0d1192228c27f9953c2ba7ac50cd549bc6a519d0e25d664d30d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page