Skip to main content

A General Use Python Tookit.

Project description

PyToolkit

Python General tools

Utilities

string_or_list function allows you to interpret a string and return a list. Provides you the option of adding a delimeter using an OR function to return a possible string that you may be expecting possible commond delimeters. Such as: ",|:|\|, ".

Example:

>>> from pytoolkit.utils import string_or_list

>>> test = 'string1,string2 string3|string4'
>>> string_or_list(test)
['string1,string2 string3|string4']
>>> string_or_list(test,delimeters=',| ')
['string1', 'string2', 'string3|string4']
>>> string_or_list(test,delimeters=',| |\|')
['string1', 'string2', 'string3', 'string4']

Dataclass Base

Used for basic extended functionality for dataclass declerations. Includes the ability to create a dataclass from a dictionary or from **kwargs. Also, includes a conversion from Dataclass to a Python dictionary.

Usage:

from typing import Optional
from dataclasses import dataclass

from pytoolkit.utilities import BaseMonitor, NONETYPE

@dataclass
class Sample(BaseMonitor):
    key1: str
    key2: str
    key3: int
    key5: Optional[str] = NONETYPE

# create a sample module
_dict = {"key1": "value1", "key2": "value2", "key3": 3}

sample1 = Sample.create_from_dict(_dict)
sample2 = Sample.create_from_kwargs(**_dict)

print(sample1)
print(sample2)
print(sample1.to_dict())

OUTPUT:

>>> print(sample1)
Sample(key1='value1', key2='value2', key3=3, key5=<object object at 0x10c8e8b70>)
>>> print(sample2)
Sample(key1='value1', key2='value2', key3=3, key5=<object object at 0x10c8e8b70>)
>>> print(sample1.to_dict())
{'key1': 'value1', 'key2': 'value2', 'key3': 3}

Maniuplating Dictionaries

Flatten a Dictionary:

import json
from pytoolkit import utilities

sample_dict = {"key1":"value","key2": "value2", "metadata": {"key1": "meta_value1","key2":"meta_value2"}}

# Convert dictionary into a flat dictionary
flat_dict = utilities.flatten_dict(sample_dict)

# Convert dictionary back into a nested ditionary
nest_dict = utilities.nested_dict(flat_dict)

print(f"This is a Flattened Dictionary:\n{json.dumps(flat_dict,indent=1)}")
print(f"This is a Nested Dictionary:\n{json.dumps(nest_dict,indent=1)}")

OUTPUT:

This is a Flattened Dictionary:
{
 "key1": "value",
 "key2": "value2",
 "metadata.key1": "meta_value1",
 "metadata.key2": "meta_value2"
}

This is a Nested Dictionary:
{
 "key1": "value",
 "key2": "value2",
 "metadata": {
  "key1": "meta_value1",
  "key2": "meta_value2"
 }
}

The above is using the default '.' seperator value. There is a mix of commands that can be passed to adjust how the dictionary is expressed. This is useful for expressing data in otherformats that do not allow for nested dictionaries, but need a way to recreate the original formated datastructure.

Nested Dictionary:

TOOD: Create a way to extract a CSV or XCEL file and turn it into a proper dictionary based on the type. Integrate with Splunk

TODO: Add splunk HEC fromatter with proper chunck

TODO: KVSTORE configuration tool.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytoolkit928-0.0.11.tar.gz (51.8 kB view details)

Uploaded Source

Built Distribution

pytoolkit928-0.0.11-py3-none-any.whl (42.0 kB view details)

Uploaded Python 3

File details

Details for the file pytoolkit928-0.0.11.tar.gz.

File metadata

  • Download URL: pytoolkit928-0.0.11.tar.gz
  • Upload date:
  • Size: 51.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pytoolkit928-0.0.11.tar.gz
Algorithm Hash digest
SHA256 8e87ca1cd0951a82630163f940637530aed994490ddf1b8af138da659de8406c
MD5 3802daa58d4ff3a285b235ee00f62169
BLAKE2b-256 fddf2d5b3fca3b29d02835ca0b02d17f681f4ea1b94b65c31b9ff10979320efd

See more details on using hashes here.

File details

Details for the file pytoolkit928-0.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for pytoolkit928-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 7309f8e9f26f93c29f647a48c03a6b7a3601956edcca9ac84598f2798a5a6577
MD5 ef69490b8b76db1ff0aecd7469045f9a
BLAKE2b-256 8a734db042bd159279512bdeb6b73507d9f99a94fe8be28d93b474d13c793c97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page