Skip to main content

A small wrapper around the CINIC10 dataset https://datashare.ed.ac.uk/handle/10283/3192

Project description

A simple package packaging a pytorch dataloader for the CINIC10 dataset.

If you use it cite the original authors

@misc{https://doi.org/10.48550/arxiv.1810.03505,
  doi = {10.48550/ARXIV.1810.03505},
  url = {https://arxiv.org/abs/1810.03505},
  author = {Darlow, Luke N. and Crowley, Elliot J. and Antoniou, Antreas and Storkey, Amos J.},
  keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), Machine Learning (stat.ML), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {CINIC-10 is not ImageNet or CIFAR-10},
  publisher = {arXiv},
  year = {2018},
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}

and if you want to be nice, also this repo (although the code is borderline trivial so no hard feelings if not).

To use simply import

from pytorch_cinic.dataset import CINIC10

and then use like CIFAR10 (except that we use partition=train/valid/test instead of train=True/False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_cinic-0.0.6.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

pytorch_cinic-0.0.6-py3-none-any.whl (5.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_cinic-0.0.6.tar.gz.

File metadata

  • Download URL: pytorch_cinic-0.0.6.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytorch_cinic-0.0.6.tar.gz
Algorithm Hash digest
SHA256 6266c20eca0e10713cbc6e047ec649c2752859978b0f2cfb5845f052ed8ffdfe
MD5 64003ac1595805a8979de84be65cd76b
BLAKE2b-256 baa93d9f04398668480eae702a45cbd4fba956c08a95a56d60d4d4c99621f957

See more details on using hashes here.

File details

Details for the file pytorch_cinic-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_cinic-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 3e50fc57b5970f6edc29a46516a1725553a92ad7ddd1c713b35f9806d8ebb294
MD5 1f37946cc935e0f4b1f72be392e8141e
BLAKE2b-256 e97c2d416fd59d81e51450d48e4a2eda86df553ee7dc70634950df630d7f3843

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page