A small wrapper around the CINIC10 dataset https://datashare.ed.ac.uk/handle/10283/3192
Project description
A simple package packaging a pytorch dataloader for the CINIC10 dataset.
If you use it cite the original authors
@misc{https://doi.org/10.48550/arxiv.1810.03505,
doi = {10.48550/ARXIV.1810.03505},
url = {https://arxiv.org/abs/1810.03505},
author = {Darlow, Luke N. and Crowley, Elliot J. and Antoniou, Antreas and Storkey, Amos J.},
keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), Machine Learning (stat.ML), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {CINIC-10 is not ImageNet or CIFAR-10},
publisher = {arXiv},
year = {2018},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
and if you want to be nice, also this repo (although the code is borderline trivial so no hard feelings if not).
To use simply import
from pytorch_cinic.dataset import CINIC10
and then use like CIFAR10 (except that we use partition=train/valid/test
instead of train=True/False
)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_cinic-0.0.6.tar.gz
(4.5 kB
view details)
Built Distribution
File details
Details for the file pytorch_cinic-0.0.6.tar.gz
.
File metadata
- Download URL: pytorch_cinic-0.0.6.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6266c20eca0e10713cbc6e047ec649c2752859978b0f2cfb5845f052ed8ffdfe |
|
MD5 | 64003ac1595805a8979de84be65cd76b |
|
BLAKE2b-256 | baa93d9f04398668480eae702a45cbd4fba956c08a95a56d60d4d4c99621f957 |
File details
Details for the file pytorch_cinic-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: pytorch_cinic-0.0.6-py3-none-any.whl
- Upload date:
- Size: 5.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e50fc57b5970f6edc29a46516a1725553a92ad7ddd1c713b35f9806d8ebb294 |
|
MD5 | 1f37946cc935e0f4b1f72be392e8141e |
|
BLAKE2b-256 | e97c2d416fd59d81e51450d48e4a2eda86df553ee7dc70634950df630d7f3843 |