Skip to main content

A small wrapper around the CINIC10 dataset https://datashare.ed.ac.uk/handle/10283/3192

Project description

A simple package packaging a pytorch dataloader for the CINIC10 dataset.

If you use it cite the original authors

@misc{https://doi.org/10.48550/arxiv.1810.03505,
  doi = {10.48550/ARXIV.1810.03505},
  url = {https://arxiv.org/abs/1810.03505},
  author = {Darlow, Luke N. and Crowley, Elliot J. and Antoniou, Antreas and Storkey, Amos J.},
  keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), Machine Learning (stat.ML), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {CINIC-10 is not ImageNet or CIFAR-10},
  publisher = {arXiv},
  year = {2018},
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}

and if you want to be nice, also this repo (although the code is borderline trivial so no hard feelings if not).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_cinic-0.0.2.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

pytorch_cinic-0.0.2-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_cinic-0.0.2.tar.gz.

File metadata

  • Download URL: pytorch_cinic-0.0.2.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytorch_cinic-0.0.2.tar.gz
Algorithm Hash digest
SHA256 499fddcfc6e1a3324c0745a605e73aa8bb730f857288b8fd5ba7b48d7e7d2cc3
MD5 5e9d5c97d760340804ea444c42ca2fd7
BLAKE2b-256 f6b611ee4cb2971b9a47ddfc95573a8862875b0117b737d39742360b5374dd8a

See more details on using hashes here.

File details

Details for the file pytorch_cinic-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_cinic-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bace2c0d9528df855c83ff33d01d8e4d95b727ed081eacaf5b188b793eb34f36
MD5 4d77c421dc34a08450bbe86ecf0eaa39
BLAKE2b-256 ba8e5320506edebcefb7d3cd012dd94490616e0c8c88f342cba774a8d6eeb0d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page