A simple PyTorch checkpoint manager
Project description
PyTorch Checkpoint Manager
A custom PyTorch checkpoint manager inspired by TensorFlow's CheckpointManager. Specify the necessary arguments in the constructor and then use the CheckpointManager.save()
and CheckpointManager.load()
methods to save/load models. Functionality is similar to that of torch.save()
and torch.load()
.
Example usage
The following is a simple convolutional network for demonstrating the checkpoint manager's functionality.
Imports:
# Neural network source: https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_a_general_checkpoint.html
import torch
import torch.nn as nn
from ckpt_manager import CheckpointManager
Create the neural network and its optimizer:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
Create the CheckpointManager:
manager = CheckpointManager(
assets={
'model' : net.state_dict(),
'optimizer' : optimizer.state_dict()
},
directory='training_checkpoints',
file_name='model',
maximum=3,
file_format='pt'
)
Save the states to the directory specified in the constructor:
manager.save()
Load the states from the directory:
load_data = manager.load()
net.load_state_dict(load_data['model'])
optimizer.load_state_dict(load_data['optimizer'])
If there is nothing to load, net
and optimizer
won't be altered.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch-ckpt-manager-0.1.2.tar.gz
.
File metadata
- Download URL: pytorch-ckpt-manager-0.1.2.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0b8c509eda0b5195dbb6499f648a98f7defdcdf2ed734fafdefb2f8beaf455c |
|
MD5 | 5e99828aac42c2c645c91be4643194a2 |
|
BLAKE2b-256 | c36f1d4496ea7a39bfd96d9bd411ac9e682a7a5b325778b6de8e8ca0452f6389 |
File details
Details for the file pytorch_ckpt_manager-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: pytorch_ckpt_manager-0.1.2-py3-none-any.whl
- Upload date:
- Size: 4.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f2a29e16dd64ad354aa4eab3b5cc630da9064bdd64f8fd965dbf9e35b838adcc |
|
MD5 | e32f0c27a3959c6c948a5b7a1dc43a04 |
|
BLAKE2b-256 | 59869dd133fb92b24568a824bc96b739bed4118079d83cb461df69d235eccf3c |