Skip to main content

Prompt engineering tool using BLIP 1/2 + CLIP Interrogate approach.

Project description

pytorch_clip_interrogator: Image-To-Promt.

Downloads Downloads Downloads

Install package

pip install pytorch_clip_interrogator

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/pytorch_clip_interrogator.git

Features

  • Fully compatible with models from Huggingface.
  • Supports BLIP 1/2 model.
  • Support batch processing.

Usage

Simple code

import torch
import requests
from PIL import Image
from pytorch_clip_interrogator import PromptEngineer

# build pipeline
pipe = PromptEngineer(
    blip_model="Salesforce/blip2-opt-2.7b",
    clip_model="openai/clip-vit-base-patch32",
    device="cuda",
    torch_dtype=torch.float16
)

# load image
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')


# generate caption
print(pipe(image))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file pytorch_clip_interrogator-2023.2.19.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_clip_interrogator-2023.2.19.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5b2c86fe16b9689e1ec82498d4647d40bcf4bc32ec9ac662620935de85f79f3f
MD5 8e4fc4a34398a23348c016705af6e84a
BLAKE2b-256 9544c4f52a3ca2198966687931c3d5995475a60253eabbccda114834eec61ea7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page