Skip to main content

Prompt engineering tool using BLIP 1/2 + CLIP Interrogate approach.

Project description

pytorch_clip_interrogator: Image-To-Promt.

Downloads Downloads Downloads

Install package

pip install pytorch_clip_interrogator

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/pytorch_clip_interrogator.git

Features

  • Fully compatible with models from Huggingface.
  • Supports BLIP 1/2 model.
  • Support batch processing.

Usage

Simple code

import torch
import requests
from PIL import Image
from pytorch_clip_interrogator import PromptEngineer

# build pipeline
pipe = PromptEngineer(
    blip_model="Salesforce/blip2-opt-2.7b",
    clip_model="openai/clip-vit-base-patch32",
    device="cuda",
    torch_dtype=torch.float16
)

# load image
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')


# generate caption
print(pipe(image))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file pytorch_clip_interrogator-2023.5.30.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_clip_interrogator-2023.5.30.0-py3-none-any.whl
Algorithm Hash digest
SHA256 37abf067006f2247680c8ceb167cb89dfae7950e2bf2c8387db1249d977330e9
MD5 01edab3a40b6373bbb4140c0d6e36918
BLAKE2b-256 4133c157bcf6d83d9161ddba64b0cb2a8133659deb9c95daccc7d633e90e24df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page