Skip to main content

Common torch tools and extension

Project description

pytorch-common

A Pypi module with pytorch common tools like:

Features

  • Callbacks (keras style)
    • Validation: Model validation.
    • ReduceLROnPlateau:
      • Reduce learning rate when a metric has stopped improving.
      • Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.
    • EarlyStop:
      • Stop training when model has stopped improving a specified metric.
    • SaveBestModel:
      • Save model weights to file while model validation metric improve.
    • Logger:
      • Logs context properties.
      • In general is used to log performance metrics every n epochs.
    • MetricsPlotter:
      • Plot evaluation metrics.
      • This graph is updated every n epochs during training process.
    • Callback and OutputCallback:
      • Base classes.
    • CallbackManager:
      • Simplify callbacks support to fit custom models.
  • StratifiedKFoldCV:
    • Support parallel fold processing on CPU.
  • Mixins
    • FiMixin
    • CommonMixin
  • Utils
    • device management
    • stopwatch
    • data split
    • os
    • model
    • LoggerBuilder

Examples

Device management

import pytorch_common.util as pu

# Setup prefered device.
pu.set_device_name('gpu')

# Setup GPU memory fraction for a process (%).
pu.set_device_memory(device_name, process_memory_fraction=0.5):

# Get prefered device. 
# Note: In case the preferred device is not found, it returns CPU as fallback.
device = pu.get_device()

Logging

import logging
import pytorch_common.util as pu

## Default loggin in console...
pu.LoggerBuilder() \
 .on_console() \
 .build()

## Setup format and level...
pu.LoggerBuilder() \
 .level(logging.ERROR) \
 .on_console('%(asctime)s - %(levelname)s - %(message)s') \
 .build()

Stopwatch

import logging
import pytorch_common.util as pu

sw = pu.Stopwatch()

# Call any demanding process...

# Get resposne time.
resposne_time = sw.elapsed_time()

# Log resposne time.
logging.info(sw.to_str())

Dataset split

import pytorch_common.util as pu

dataset = ... # <-- Torch.utils.data.Dataset

train_subset, test_subset = pu.train_val_split(
  dataset, 
  train_percent = .7
)

train_subset, val_subset, test_subset = pu.train_val_test_split(
  dataset, 
  train_percent = .7, 
  val_percent   = .15
)

Kfolding

import logging
from pytorch_common.kfoldcv import StratifiedKFoldCV, \
                                   ParallelKFoldCVStrategy, \
                                   NonParallelKFoldCVStrategy

# Call your model under this function..
def train_fold_fn(dataset, train_idx, val_idx, params, fold):
  pass

# Get dataset labels
def get_y_values_fn(dataset):
  pass

cv = StratifiedKFoldCV(
  train_fold_fn, 
  get_y_values_fn, 
  strategy=NonParallelKFoldCVStrategy() # or ParallelKFoldCVStrategy()
  k_fold = 5
)

# Model hyperparams...
params = {
    'seed': 42,
    'lr': 0.01,
    'epochs': 50,
    'batch_size': 4000,
    ...
}

# Train model...
result = cv.train(dataset, params)

logging.info('CV results: {}'.format(result))

Assertions

from pytorch_common.error import Assertions, Checker

# Check functions and construtor params usign assertions..

param_value = -1

# Raise an exception with 404103 eror code when the condition is not met 
Assertions.positive_int(404103, param_value, 'param name')

Assertions.positive_float(404103, param_value, 'param name')

# Other options
Assertions.is_class(404205, param_value, 'param name', aClass)
 
Assertions.is_tensor(404401, param_value, 'param name')

Assertions.has_shape(404401, param_value, (3, 4), 'param name')

# Assertions was impelemented using a Checker builder:

 Checker(error_code, value, name) \
    .is_not_none() \
    .is_int() \
    .is_positive() \
    .check()
   
# Other checker options..
#   .is_not_none()
#   .is_int()
#   .is_float()
#   .is_positive()
#   .is_a(aclass)
#   .is_tensor()
#   .has_shape(shape)

Callbacks

from pytorch_common.callbacks import CallbackManager

from pytorch_common.callbacks import EarlyStop, \
                                     ReduceLROnPlateau, \
                                     Validation

from pytorch_common.callbacks.output import Logger, \
                                            MetricsPlotter


def train_method(model, epochs, optimizer, loss_fn, callbacks):
 
 callback_manager = CallbackManager(epochs, optimizer, loss_fn, model, callbacks)

 for epoch in range(epochs):
            callback_manager.on_epoch_start(epoch)

            # train model...

            callback_manager.on_epoch_end(train_loss)

            if callback_manager.break_training():
                break

  return callback_manager.ctx
        

model     = # Create my model...
optimizer = # My optimizer...
loss_fn   = # my lost function

callbacks = [
   # Log context variables after each epoch...
   Logger(['fold', 'time', 'epoch', 'lr', 'train_loss', 'val_loss', ... ]),
   
   EarlyStop(metric='val_auc', mode='max', patience=3),
  
   ReduceLROnPlateau(metric='val_auc'),
  
   Validation(
       val_set,
       metrics = {
           'my_metric_name': lambda y_pred, y_true: # calculate validation metic,
           ...
       },
       each_n_epochs=5
   ),
   
   SaveBestModel(metric='val_loss'),
   
   MetricsPlotter(metrics=['train_loss', 'val_loss'])
]


train_method(model, epochs=100, optimizer, loss_fn, callbacks)

Go to next projects to see funcional code examples:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-common-0.0.19.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

pytorch_common-0.0.19-py3-none-any.whl (21.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-common-0.0.19.tar.gz.

File metadata

  • Download URL: pytorch-common-0.0.19.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.4 Linux/5.15.32-1-MANJARO

File hashes

Hashes for pytorch-common-0.0.19.tar.gz
Algorithm Hash digest
SHA256 cfe71963e94148157cd2b7144afa2276f44d09736fa5e1ce819e1420cfba6d81
MD5 14068000bc28ea5cd033d64a338cd075
BLAKE2b-256 86c016efbd678bd8665b4beaff9c59db02a7173fbc34a659517ec7dd1d0e8ae9

See more details on using hashes here.

File details

Details for the file pytorch_common-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: pytorch_common-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 21.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.4 Linux/5.15.32-1-MANJARO

File hashes

Hashes for pytorch_common-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 9d655c3fa026ffdd34086ec701be2387adc461ca1cc20ba69a4ea2dcae3bfcc4
MD5 03e8c58f9a1b3427bd3fabf9bd4b0cac
BLAKE2b-256 12fdf83b8dc56cfa37dc7b99fe8d393179dfe8cfc2b26ebbbe00f7c007fb8191

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page