Skip to main content

Common torch tools and extension

Project description

pytorch-common

A Pypi module with pytorch common tools like:

Build release

Step 1: Increase version into next files:

pytorch_common/__init__.py
pyproject.toml

Step 2: Build release.

$ poetry build                                                                                                                                                                                                                    

Building pytorch-common (0.0.22)
  - Building sdist
  - Built pytorch-common-0.0.22.tar.gz
  - Building wheel
  - Built pytorch_common-0.0.22-py3-none-any.whl

Features

  • Callbacks (keras style)
    • Validation: Model validation.
    • ReduceLROnPlateau:
      • Reduce learning rate when a metric has stopped improving.
      • Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.
    • EarlyStop:
      • Stop training when model has stopped improving a specified metric.
    • SaveBestModel:
      • Save model weights to file while model validation metric improve.
    • Logger:
      • Logs context properties.
      • In general is used to log performance metrics every n epochs.
    • MetricsPlotter:
      • Plot evaluation metrics.
      • This graph is updated every n epochs during training process.
    • Callback and OutputCallback:
      • Base classes.
    • CallbackManager:
      • Simplify callbacks support to fit custom models.
  • StratifiedKFoldCV:
    • Support parallel fold processing on CPU.
  • Mixins
    • FiMixin
    • CommonMixin
    • PredictMixin
    • PersistentMixin
  • Utils
    • device management
    • stopwatch
    • data split
    • os
    • model
    • LoggerBuilder

Examples

Device management

import pytorch_common.util as pu

# Setup prefered device.
pu.set_device_name('gpu') # / 'cpu'

# Setup GPU memory fraction for a process (%).
pu.set_device_memory(
  'gpu' # / 'cpu',
  process_memory_fraction=0.5
)

# Get prefered device.
# Note: In case the preferred device is not found, it returns CPU as fallback.
device = pu.get_device()

Logging

import logging
import pytorch_common.util as pu

## Default loggin in console...
pu.LoggerBuilder() \
 .on_console() \
 .build()

## Setup format and level...
pu.LoggerBuilder() \
 .level(logging.ERROR) \
 .on_console('%(asctime)s - %(levelname)s - %(message)s') \
 .build()

Stopwatch

import logging
import pytorch_common.util as pu

sw = pu.Stopwatch()

# Call any demanding process...

# Get resposne time.
resposne_time = sw.elapsed_time()

# Log resposne time.
logging.info(sw.to_str())

Dataset split

import pytorch_common.util as pu

dataset = ... # <-- Torch.utils.data.Dataset

train_subset, test_subset = pu.train_val_split(
  dataset,
  train_percent = .7
)

train_subset, val_subset, test_subset = pu.train_val_test_split(
  dataset,
  train_percent = .7,
  val_percent   = .15
)

Kfolding

import logging
from pytorch_common.kfoldcv import StratifiedKFoldCV, \
                                   ParallelKFoldCVStrategy, \
                                   NonParallelKFoldCVStrategy

# Call your model under this function..
def train_fold_fn(dataset, train_idx, val_idx, params, fold):
  pass

# Get dataset labels
def get_y_values_fn(dataset):
  pass

cv = StratifiedKFoldCV(
  train_fold_fn,
  get_y_values_fn,
  strategy=NonParallelKFoldCVStrategy() # or ParallelKFoldCVStrategy()
  k_fold = 5
)

# Model hyperparams...
params = {
    'seed': 42,
    'lr': 0.01,
    'epochs': 50,
    'batch_size': 4000,
    ...
}

# Train model...
result = cv.train(dataset, params)

logging.info('CV results: {}'.format(result))

Assertions

from pytorch_common.error import Assertions, Checker

# Check functions and construtor params usign assertions..

param_value = -1

# Raise an exception with 404103 eror code when the condition is not met 
Assertions.positive_int(404103, param_value, 'param name')

Assertions.positive_float(404103, param_value, 'param name')

# Other options
Assertions.is_class(404205, param_value, 'param name', aClass)

Assertions.is_tensor(404401, param_value, 'param name')

Assertions.has_shape(404401, param_value, (3, 4), 'param name')

# Assertions was impelemented using a Checker builder:

 Checker(error_code, value, name) \
    .is_not_none() \
    .is_int() \
    .is_positive() \
    .check()

# Other checker options..
#   .is_not_none()
#   .is_int()
#   .is_float()
#   .is_positive()
#   .is_a(aclass)
#   .is_tensor()
#   .has_shape(shape)

Callbacks

from pytorch_common.callbacks import CallbackManager

from pytorch_common.callbacks import EarlyStop, \
                                     ReduceLROnPlateau, \
                                     Validation

from pytorch_common.callbacks.output import Logger, \
                                            MetricsPlotter


def train_method(model, epochs, optimizer, loss_fn, callbacks):

 callback_manager = CallbackManager(epochs, optimizer, loss_fn, model, callbacks)

 for epoch in range(epochs):
            callback_manager.on_epoch_start(epoch)

            # train model...

            callback_manager.on_epoch_end(train_loss)

            if callback_manager.break_training():
                break

  return callback_manager.ctx


model     = # Create my model...
optimizer = # My optimizer...
loss_fn   = # my lost function

callbacks = [
   # Log context variables after each epoch...
   Logger(['fold', 'time', 'epoch', 'lr', 'train_loss', 'val_loss', ... ]),

   EarlyStop(metric='val_auc', mode='max', patience=3),
   
   ReduceLROnPlateau(metric='val_auc'),
  
   Validation(
       val_set,
       metrics = {
           'my_metric_name': lambda y_pred, y_true: # calculate validation metic,
           ...
       },
       each_n_epochs=5
   ),
   
   SaveBestModel(metric='val_loss'),
   
   MetricsPlotter(metrics=['train_loss', 'val_loss'])
]


train_method(model, epochs=100, optimizer, loss_fn, callbacks)

Go to next projects to see funcional code examples:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-common-0.0.22.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

pytorch_common-0.0.22-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-common-0.0.22.tar.gz.

File metadata

  • Download URL: pytorch-common-0.0.22.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.9 Linux/6.1.19-1-MANJARO

File hashes

Hashes for pytorch-common-0.0.22.tar.gz
Algorithm Hash digest
SHA256 56712cce53fc13d6e027813d721ba2825ed8fd68ad4c1c38920118a72ebb49bd
MD5 4575f496dd4086c32d20469279c5448e
BLAKE2b-256 84bd9b9a5ac2a81b2e8153e22f731713ec654859710d1f07af11d1cce06eb388

See more details on using hashes here.

File details

Details for the file pytorch_common-0.0.22-py3-none-any.whl.

File metadata

  • Download URL: pytorch_common-0.0.22-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.9 Linux/6.1.19-1-MANJARO

File hashes

Hashes for pytorch_common-0.0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 1904e06f365c5cfaa3fce7e7d6a57781e064a5b59acd1ae7c5948a32b130f82c
MD5 0cceb585158921caadea8aa1ac7f30e5
BLAKE2b-256 939b597613948a8b1b623994677c3b063dc37bbeb58e8921173361e3f8679972

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page