Skip to main content

Common torch tools and extension

Project description

pytorch-common

A Pypi module with pytorch common tools like:

Build release

Step 1: Increase version into next files:

pytorch_common/__init__.py
pyproject.toml

Step 2: Build release.

$ poetry build                                                                                                                                                                                                                    

Building pytorch-common (0.0.22)
  - Building sdist
  - Built pytorch-common-0.0.22.tar.gz
  - Building wheel
  - Built pytorch_common-0.0.22-py3-none-any.whl

Step 3: Publish release to PyPI repository.

$ poetry build                                                                                                                                                                                                                    

Username: user_name
Password: a pass

Publishing pytorch-common (0.0.22) to PyPI
 - Uploading pytorch-common-0.0.22.tar.gz 100%
 - Uploading pytorch_common-0.0.22-py3-none-any.whl 100%

Features

  • Callbacks (keras style)
    • Validation: Model validation.
    • ReduceLROnPlateau:
      • Reduce learning rate when a metric has stopped improving.
      • Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.
    • EarlyStop:
      • Stop training when model has stopped improving a specified metric.
    • SaveBestModel:
      • Save model weights to file while model validation metric improve.
    • Logger:
      • Logs context properties.
      • In general is used to log performance metrics every n epochs.
    • MetricsPlotter:
      • Plot evaluation metrics.
      • This graph is updated every n epochs during training process.
    • Callback and OutputCallback:
      • Base classes.
    • CallbackManager:
      • Simplify callbacks support to fit custom models.
  • StratifiedKFoldCV:
    • Support parallel fold processing on CPU.
  • Mixins
    • FiMixin
    • CommonMixin
    • PredictMixin
    • PersistentMixin
  • Utils
    • device management
    • stopwatch
    • data split
    • os
    • model
    • LoggerBuilder

Examples

Device management

import pytorch_common.util as pu

# Setup prefered device.
pu.set_device_name('gpu') # / 'cpu'

# Setup GPU memory fraction for a process (%).
pu.set_device_memory(
  'gpu' # / 'cpu',
  process_memory_fraction=0.5
)

# Get prefered device.
# Note: In case the preferred device is not found, it returns CPU as fallback.
device = pu.get_device()

Logging

import logging
import pytorch_common.util as pu

## Default loggin in console...
pu.LoggerBuilder() \
 .on_console() \
 .build()

## Setup format and level...
pu.LoggerBuilder() \
 .level(logging.ERROR) \
 .on_console('%(asctime)s - %(levelname)s - %(message)s') \
 .build()

Stopwatch

import logging
import pytorch_common.util as pu

sw = pu.Stopwatch()

# Call any demanding process...

# Get resposne time.
resposne_time = sw.elapsed_time()

# Log resposne time.
logging.info(sw.to_str())

Dataset split

import pytorch_common.util as pu

dataset = ... # <-- Torch.utils.data.Dataset

train_subset, test_subset = pu.train_val_split(
  dataset,
  train_percent = .7
)

train_subset, val_subset, test_subset = pu.train_val_test_split(
  dataset,
  train_percent = .7,
  val_percent   = .15
)

Kfolding

import logging
from pytorch_common.kfoldcv import StratifiedKFoldCV, \
                                   ParallelKFoldCVStrategy, \
                                   NonParallelKFoldCVStrategy

# Call your model under this function..
def train_fold_fn(dataset, train_idx, val_idx, params, fold):
  pass

# Get dataset labels
def get_y_values_fn(dataset):
  pass

cv = StratifiedKFoldCV(
  train_fold_fn,
  get_y_values_fn,
  strategy=NonParallelKFoldCVStrategy() # or ParallelKFoldCVStrategy()
  k_fold = 5
)

# Model hyperparams...
params = {
    'seed': 42,
    'lr': 0.01,
    'epochs': 50,
    'batch_size': 4000,
    ...
}

# Train model...
result = cv.train(dataset, params)

logging.info('CV results: {}'.format(result))

Assertions

from pytorch_common.error import Assertions, Checker

# Check functions and construtor params usign assertions..

param_value = -1

# Raise an exception with 404103 eror code when the condition is not met 
Assertions.positive_int(404103, param_value, 'param name')

Assertions.positive_float(404103, param_value, 'param name')

# Other options
Assertions.is_class(404205, param_value, 'param name', aClass)

Assertions.is_tensor(404401, param_value, 'param name')

Assertions.has_shape(404401, param_value, (3, 4), 'param name')

# Assertions was impelemented using a Checker builder:

 Checker(error_code, value, name) \
    .is_not_none() \
    .is_int() \
    .is_positive() \
    .check()

# Other checker options..
#   .is_not_none()
#   .is_int()
#   .is_float()
#   .is_positive()
#   .is_a(aclass)
#   .is_tensor()
#   .has_shape(shape)

Callbacks

from pytorch_common.callbacks import CallbackManager

from pytorch_common.callbacks import EarlyStop, \
                                     ReduceLROnPlateau, \
                                     Validation

from pytorch_common.callbacks.output import Logger, \
                                            MetricsPlotter


def train_method(model, epochs, optimizer, loss_fn, callbacks):

 callback_manager = CallbackManager(epochs, optimizer, loss_fn, model, callbacks)

 for epoch in range(epochs):
            callback_manager.on_epoch_start(epoch)

            # train model...

            callback_manager.on_epoch_end(train_loss)

            if callback_manager.break_training():
                break

  return callback_manager.ctx


model     = # Create my model...
optimizer = # My optimizer...
loss_fn   = # my lost function

callbacks = [
   # Log context variables after each epoch...
   Logger(['fold', 'time', 'epoch', 'lr', 'train_loss', 'val_loss', ... ]),

   EarlyStop(metric='val_auc', mode='max', patience=3),
   
   ReduceLROnPlateau(metric='val_auc'),
  
   Validation(
       val_set,
       metrics = {
           'my_metric_name': lambda y_pred, y_true: # calculate validation metic,
           ...
       },
       each_n_epochs=5
   ),
   
   SaveBestModel(metric='val_loss'),
   
   MetricsPlotter(metrics=['train_loss', 'val_loss'])
]


train_method(model, epochs=100, optimizer, loss_fn, callbacks)

Go to next projects to see funcional code examples:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-common-0.1.2.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

pytorch_common-0.1.2-py3-none-any.whl (24.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-common-0.1.2.tar.gz.

File metadata

  • Download URL: pytorch-common-0.1.2.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.10 Linux/6.1.22-1-MANJARO

File hashes

Hashes for pytorch-common-0.1.2.tar.gz
Algorithm Hash digest
SHA256 4a61bedb93d24e730a8847cae5aab9c64ea0c18c9a0937beb1b1488a2ecc31a6
MD5 89fb3846815f1fde372404a6bd541a27
BLAKE2b-256 d6b068b3d02f764f0e24aa3c6728b13e81d9be8646d382a0da6878590488a8f5

See more details on using hashes here.

File details

Details for the file pytorch_common-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pytorch_common-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 24.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.10 Linux/6.1.22-1-MANJARO

File hashes

Hashes for pytorch_common-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5749dfda0a6be0045e5758a36d04adff9cfbef30e0cbfaab76436b62644ccc14
MD5 584740cdf16c57176a393dce482086ce
BLAKE2b-256 fb958bb0f389eeb174eea2d3710bcf27f7649513697a662055459354f1af1269

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page