Domain Attention Mixing Network: tool for domain adaptation
Project description
Domain Attention Mixing Network(DAMN)
Method
Citation
@article{tilk2021damn,
title={Domain Attention Mixing Network},
author={Bence Tilk},
journal={GitHub: https://github.com/tilkb/damn},
year={2021}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch-damn-0.2.3.tar.gz
(2.5 kB
view details)
Built Distribution
File details
Details for the file pytorch-damn-0.2.3.tar.gz
.
File metadata
- Download URL: pytorch-damn-0.2.3.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7349a1984478abbf31096a083e8260e3a2060fb5809277d791e943031877841e |
|
MD5 | d60bc87e0e9435a7035a93a9bc63223a |
|
BLAKE2b-256 | 62037d17655854911de44656a04fd742aaeab341ce3fff3d74b8be9403b8781b |
File details
Details for the file pytorch_damn-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: pytorch_damn-0.2.3-py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efb13c55329eee86de1849a53184930b3509187c211c95d86a5c09f00d4666b9 |
|
MD5 | cadcdb06ff032a7b2584fe556dbd9625 |
|
BLAKE2b-256 | 9d693a0b39abe3cacec25a3368f1da3bf9c81f040b470d4e5e3d48db615dd0d1 |