Domain Attention Mixing Network: tool for domain adaptation
Project description
Domain Attention Mixing Network(DAMN)
Method
Citation
@article{tilk2021damn,
title={Domain Attention Mixing Network},
author={Bence Tilk},
journal={GitHub: https://github.com/tilkb/damn},
year={2021}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_damn-0.3.4.tar.gz
(2.5 kB
view details)
Built Distribution
File details
Details for the file pytorch_damn-0.3.4.tar.gz
.
File metadata
- Download URL: pytorch_damn-0.3.4.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87ac5b18c9f49bf3e262109a52165f69e5abc186f950a807f69356423a7eac08 |
|
MD5 | e1302e8d72019e09241310ab958a905f |
|
BLAKE2b-256 | 44b5018bca202415191c45f8d48b27bab4e0ba9bf789f7c0f76ece6af487995b |
File details
Details for the file pytorch_damn-0.3.4-py3-none-any.whl
.
File metadata
- Download URL: pytorch_damn-0.3.4-py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b57136b781c79fdb9e34667ee1140821877cafc1fc3713db344cfbd5261d999 |
|
MD5 | f214bc8990622e5a2128fb4b20b0d8b0 |
|
BLAKE2b-256 | b7547b3ca43194c7e2b7373a667c4b63c8b6d3b6a4a23a5d061c00238608474a |