Domain Attention Mixing Network: tool for domain adaptation
Project description
Domain Attention Mixing Network(DAMN)
Method
Citation
@article{tilk2021damn,
title={Domain Attention Mixing Network},
author={Bence Tilk},
journal={GitHub: https://github.com/tilkb/damn},
year={2021}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_damn-0.4.4.tar.gz
(4.1 kB
view details)
Built Distribution
File details
Details for the file pytorch_damn-0.4.4.tar.gz
.
File metadata
- Download URL: pytorch_damn-0.4.4.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb9c25e19bc17b072e3fcdb7104983f4a520d1734f42ea95f34183677b069f2f |
|
MD5 | 9b178d3dceec810b288ac8363fb8be1f |
|
BLAKE2b-256 | e3d21457d51697e9b1168de83a0b459842b5ca223bba6a902254a8dd53a58f45 |
File details
Details for the file pytorch_damn-0.4.4-py3-none-any.whl
.
File metadata
- Download URL: pytorch_damn-0.4.4-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34362093917f29388c04a63997496480ff31d116c271070087c343063bad65ac |
|
MD5 | cba324ff447ba05c8be3c862c34d61a2 |
|
BLAKE2b-256 | 9565de4d7bb7eeab8af0969cbc786f51431c94145efdbfc7a93080ae54591da1 |