Domain Attention Mixing Network: tool for domain adaptation
Project description
Domain Attention Mixing Network(DAMN)
Method
Citation
@article{tilk2021damn,
title={Domain Attention Mixing Network},
author={Bence Tilk},
journal={GitHub: https://github.com/tilkb/damn},
year={2021}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_damn-0.6.4.tar.gz
(4.2 kB
view details)
Built Distribution
File details
Details for the file pytorch_damn-0.6.4.tar.gz
.
File metadata
- Download URL: pytorch_damn-0.6.4.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02d4f64cea226b94a234a2ab2586da25fdfd42c8958df30cd1286323390dfa61 |
|
MD5 | f357c632420483844464ba455664f05f |
|
BLAKE2b-256 | 72ddb4d1b91a0a85c57ee345c51490b43463c55bbe69a121d3e32134c7d8f5c4 |
File details
Details for the file pytorch_damn-0.6.4-py3-none-any.whl
.
File metadata
- Download URL: pytorch_damn-0.6.4-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e67b36652f12b84a357df7ee9b4de2212d878488694d8a2759e2416467d83ca |
|
MD5 | 502b4d0ffbbbbe19ec14dfc9559ea33d |
|
BLAKE2b-256 | 83f90501b6a13003e879a52068713c66d6bf49c43c8046200ffc51368eb9fc60 |