Skip to main content

Simple dataset to dataloader library for pytorch

Project description

https://badge.fury.io/py/pytorch-datastream.svg https://img.shields.io/pypi/pyversions/pytorch-datastream.svg https://readthedocs.org/projects/pytorch-datastream/badge/?version=latest https://img.shields.io/pypi/l/pytorch-datastream.svg

This is a simple library for creating readable dataset pipelines and reusing best practices for issues such as imbalanced datasets. There are just two components to keep track of: Dataset and Datastream.

Dataset is a simple mapping between an index and an example. It provides pipelining of functions in a readable syntax originally adapted from tensorflow 2’s tf.data.Dataset.

Datastream combines a Dataset and a sampler into a stream of examples. It provides a simple solution to oversampling / stratification, weighted sampling, and finally converting to a torch.utils.data.DataLoader.

Install

pip install pytorch-datastream

Usage

The list below is meant to showcase functions that are useful in most standard and non-standard cases. It is not meant to be an exhaustive list. See the documentation for a more extensive list on API and usage.

Dataset.from_subscriptable
Dataset.from_dataframe
Dataset
    .map
    .subset
    .split
    .cache
    .with_columns

Datastream.merge
Datastream.zip
Datastream
    .map
    .data_loader
    .zip_index
    .update_weights_
    .update_example_weight_
    .weight
    .state_dict
    .load_state_dict

Merge / stratify / oversample datastreams

The fruit datastreams given below repeatedly yields the string of its fruit type.

>>> datastream = Datastream.merge([
...     (apple_datastream, 2),
...     (pear_datastream, 1),
...     (banana_datastream, 1),
... ])
>>> next(iter(datastream.data_loader(batch_size=8)))
['apple', 'apple', 'pear', 'banana', 'apple', 'apple', 'pear', 'banana']

Zip independently sampled datastreams

The fruit datastreams given below repeatedly yields the string of its fruit type.

>>> datastream = Datastream.zip([
...     apple_datastream,
...     Datastream.merge([pear_datastream, banana_datastream]),
... ])
>>> next(iter(datastream.data_loader(batch_size=4)))
[('apple', 'pear'), ('apple', 'banana'), ('apple', 'pear'), ('apple', 'banana')]

More usage examples

See the documentation for more usage examples.

Install from source

To patch the code locally for Python 3.6 run patch-python3.6.sh.

$ ./patch-python3.6.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytorch_datastream-0.3.3-py38-none-any.whl (23.8 kB view details)

Uploaded Python 3.8

pytorch_datastream-0.3.3-py37-none-any.whl (23.8 kB view details)

Uploaded Python 3.7

File details

Details for the file pytorch_datastream-0.3.3-py38-none-any.whl.

File metadata

  • Download URL: pytorch_datastream-0.3.3-py38-none-any.whl
  • Upload date:
  • Size: 23.8 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for pytorch_datastream-0.3.3-py38-none-any.whl
Algorithm Hash digest
SHA256 8e1d86247b19fd8ec33bad20017c4509dda93cd9a06085d9bcaa05137114749c
MD5 bf53a7b98592ce745bc8f00b50cd34b0
BLAKE2b-256 7b8363614a64679037101932ef0e232d9e599a0a2cdb3b64cc08f3eedfa25f56

See more details on using hashes here.

File details

Details for the file pytorch_datastream-0.3.3-py37-none-any.whl.

File metadata

  • Download URL: pytorch_datastream-0.3.3-py37-none-any.whl
  • Upload date:
  • Size: 23.8 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for pytorch_datastream-0.3.3-py37-none-any.whl
Algorithm Hash digest
SHA256 8a591967899cdd0872dd5a592ef0dbcf2ee9b453a203e0e4f2f3234115175339
MD5 4aa94026cb6ce2f56fe234478cdac061
BLAKE2b-256 9bce7f39bcdaeb9ff4d259dd25948656a6a811292625977bcac84b2bb91ff089

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page