Skip to main content

DNI, for Pytorch

Project description

# Decoupled Neural Interfaces Using Synthetic Gradients

[![Build Status](]( [![PyPI version](](

<!-- START doctoc generated TOC please keep comment here to allow auto update -->

- [Install](#install)
- [From source](#from-source)
- [Architecure](#architecure)
- [Usage](#usage)
- [Tasks](#tasks)

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

This is an implementation of [Decoupled Neural Interfaces using Synthetic Gradients, Jaderberg et al.](

## Install

pip install pytorch-dni

### From source

git clone
cd pytorch-dni
pip install -r ./requirements.txt
pip install -e .

## Architecure

<img src="./docs/3-6.gif" />

## Usage

from dni import DNI

# Custom network, can be anything extending nn.Module
net = WhateverNetwork(**kwargs)
opt = optim.Adam(net.parameters(), lr=0.001)

# use DNI to optimize this network
net = DNI(net, optim=opt)

# after that we go about our business as usual
for e in range(epoch):
output = net(input, *args)
loss = criterion(output, target_output)


## DNI Networks

This package ships with 3 types of DNI networks:

- RNN_DNI: stacked `LSTM`s, `GRU`s or `RNN`s
- Linear_DNI: 2-layer `Linear` modules
- Linear_Sigmoid_DNI: 2-layer `Linear` followed by `Sigmoid`

## Custom DNI Networks

Custom DNI nets can be created using the `DNI_Network` interface:

class MyDNI(DNI_Network):
def __init__(self, input_size, hidden_size, output_size, **kwargs):
super(MyDNI, self).__init__(input_size, hidden_size, output_size) = { ... your custom net }

def forward(self, input, hidden):
return, None # return (output, hidden), hidden can be None


## Tasks

The tasks included in this project are the same as those in [pytorch-dnc](, except that they're trained here using DNI.

## Notable stuff

- Using a linear SG module makes the implicit assumption that loss is a quadratic function of the activations
- For best performance one should adapt the SG module architecture to the loss function used. For MSE linear SG is a reasonable choice, however for log loss one should use architectures including a sigmoid applied pointwise to a linear SG

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pytorch-dni, version 0.0.1
Filename, size File type Python version Upload date Hashes
Filename, size pytorch_dni-0.0.1-py3-none-any.whl (10.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pytorch-dni-0.0.1.tar.gz (7.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page