Skip to main content

Package for A PyTorch Extension by NVIDIA

Project description

Introduction

This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Full API Documentation: https://nvidia.github.io/apex

GTC 2019 and Pytorch DevCon 2019 Slides

Contents

1. Amp: Automatic Mixed Precision

apex.amp is a tool to enable mixed precision training by changing only 3 lines of your script. Users can easily experiment with different pure and mixed precision training modes by supplying different flags to amp.initialize.

Webinar introducing Amp (The flag cast_batchnorm has been renamed to keep_batchnorm_fp32).

API Documentation

Comprehensive Imagenet example

DCGAN example coming soon...

Moving to the new Amp API (for users of the deprecated "Amp" and "FP16_Optimizer" APIs)

2. Distributed Training

apex.parallel.DistributedDataParallel is a module wrapper, similar to torch.nn.parallel.DistributedDataParallel. It enables convenient multiprocess distributed training, optimized for NVIDIA's NCCL communication library.

API Documentation

Python Source

Example/Walkthrough

The Imagenet example shows use of apex.parallel.DistributedDataParallel along with apex.amp.

Synchronized Batch Normalization

apex.parallel.SyncBatchNorm extends torch.nn.modules.batchnorm._BatchNorm to support synchronized BN. It allreduces stats across processes during multiprocess (DistributedDataParallel) training. Synchronous BN has been used in cases where only a small local minibatch can fit on each GPU. Allreduced stats increase the effective batch size for the BN layer to the global batch size across all processes (which, technically, is the correct formulation). Synchronous BN has been observed to improve converged accuracy in some of our research models.

Checkpointing

To properly save and load your amp training, we introduce the amp.state_dict(), which contains all loss_scalers and their corresponding unskipped steps, as well as amp.load_state_dict() to restore these attributes.

In order to get bitwise accuracy, we recommend the following workflow:

# Initialization
opt_level = 'O1'
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)

# Train your model
...
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
...

# Save checkpoint
checkpoint = {
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'amp': amp.state_dict()
}
torch.save(checkpoint, 'amp_checkpoint.pt')
...

# Restore
model = ...
optimizer = ...
checkpoint = torch.load('amp_checkpoint.pt')

model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
amp.load_state_dict(checkpoint['amp'])

# Continue training
...

Note that we recommend restoring the model using the same opt_level. Also note that we recommend calling the load_state_dict methods after amp.initialize.

Requirements

Python 3

CUDA 9 or newer

PyTorch 0.4 or newer. The CUDA and C++ extensions require pytorch 1.0 or newer.

Quick Start

Linux

For performance and full functionality, we recommend installing with CUDA and C++ extensions according to

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" pytorch-extension

For a Python-only build (required with Pytorch 0.4):

pip install -v --disable-pip-version-check --no-cache-dir pytorch-extension

A Python-only build omits:

  • Fused kernels required to use apex.optimizers.FusedAdam.
  • Fused kernels required to use apex.normalization.FusedLayerNorm.
  • Fused kernels that improve the performance and numerical stability of apex.parallel.SyncBatchNorm.
  • Fused kernels that improve the performance of apex.parallel.DistributedDataParallel and apex.amp. DistributedDataParallel, amp, and SyncBatchNorm will still be usable, but they may be slower.

Pyprof support has been moved to its own dedicated repository. The codebase is deprecated in Apex and will be removed soon.

Windows support

Windows support is experimental, and Linux is recommended. pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" pytorch-extension may work if you were able to build Pytorch from source on your system. pip install -v --disable-pip-version-check --no-cache-dir pytorch-extension (without CUDA/C++ extensions) is more likely to work. If you installed Pytorch in a Conda environment, make sure to install Apex in that same environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-extension-0.2.tar.gz (603.5 kB view hashes)

Uploaded Source

Built Distribution

pytorch_extension-0.2-py3-none-any.whl (214.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page