Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

None

Project description

pytorch-fast-elmo

https://img.shields.io/pypi/v/pytorch_fast_elmo.svg https://img.shields.io/travis/cnt-dev/pytorch-fast-elmo.svg https://img.shields.io/badge/License-MIT-yellow.svg

Introduction

A fast ELMo implementation with features:

  • Lower execution overhead. The core components are reimplemented in Libtorch in order to reduce the Python execution overhead (45% speedup).
  • A more flexible design. By redesigning the workflow, the user could extend or change the ELMo behavior easily.

Benchmark

Hardware:

  • CPU: i7-7800X
  • GPU: 1080Ti

Options:

  • Batch size: 32
  • Warm up iterations: 20
  • Test iterations: 1000
  • Word length: [1, 20]
  • Sentence length: [1, 30]
  • Random seed: 10000
Item Mean Of Durations (ms) cumtime(synchronize)%
Fast ELMo (CUDA, no synchronize) 31 N/A
AllenNLP ELMo (CUDA, no synchronize) 56 N/A
Fast ELMo (CUDA, synchronize) 47 26.13%
AllenNLP ELMo (CUDA, synchronize) 57 0.02%
Fast ELMo (CPU) 1277 N/A
AllenNLP ELMo (CPU) 1453 N/A

Usage

Please install torch==1.0.0 first. Then, simply run this command to install.

pip install pytorch-fast-elmo

FastElmo should have the same behavior as AllenNLP’s ELMo.

from pytorch_fast_elmo import FastElmo, batch_to_char_ids

options_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_options.json'
weight_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5'

elmo = FastElmo(options_file, weight_file)

sentences = [['First', 'sentence', '.'], ['Another', '.']]
character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Use FastElmoWordEmbedding if you have disabled char_cnn in bilm-tf, or have exported the Char CNN representation to a weight file.

from pytorch_fast_elmo import FastElmoWordEmbedding, load_and_build_vocab2id, batch_to_word_ids

options_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_options.json'
weight_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5'

vocab_file = '/path/to/vocab.txt'
embedding_file = '/path/to/cached_elmo_embedding.hdf5'

elmo = FastElmoWordEmbedding(
        options_file,
        weight_file,
        # Could be omitted if the embedding weight is in `weight_file`.
        word_embedding_weight_file=embedding_file,
)
vocab2id = load_and_build_vocab2id(vocab_file)

sentences = [['First', 'sentence', '.'], ['Another', '.']]
word_ids = batch_to_word_ids(sentences, vocab2id)

embeddings = elmo(word_ids)

CLI commands:

# Cache the Char CNN representation.
fast-elmo cache-char-cnn ./vocab.txt ./options.json ./lm_weights.hdf5 ./lm_embd.hdf5

# Export word embedding.
fast-elmo export-word-embd ./vocab.txt ./no-char-cnn.hdf5 ./embd.txt

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.0 (2019-01-02)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pytorch-fast-elmo, version 0.6.12
Filename, size File type Python version Upload date Hashes
Filename, size pytorch_fast_elmo-0.6.12.tar.gz (429.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page