Skip to main content

Torchvision Faster RCNN Fine Tuner

Project description

Pytorch Faster RCNN

CI Tests Check Formatting Build mkdocs Deploy mkdocs PyPi Release Install Package

Faster RCNN Fine-Tune Implementation in Pytorch.

How to use ?

  1. git clone the repo
git clone https://github.com/oke-aditya/pytorch_fasterrcnn.git
  1. Install PyTorch and torchvision for your system.

Simply edit the config file to set your hyper parameters.

  1. Keep the training and validation csv file as follows

NOTE

Do not use target as 0 class. It is reserved as background.

image_id xtl ytl xbr ybr      target
1        xmin ymin xmax ymax   1
1        xmin ymin xmax ymax   2
2		 xmin ymin xmax ymax   3
  1. Simply edit the config file to set your hyper parameters

  2. Run the train.py file

Features: -

  • It works for multiple class object detection.

Backbones Supported: -

  • Note that backbones are pretrained on imagenet.

  • Following backbones are supported

  1. vgg11, vgg13, vgg16, vgg19
  2. resnet18, resnet34, resnet50, resnet101, resnet152
  3. renext101
  4. mobilenet_v2

Sample Outputs

Helmet Detector

Helmet Detection

Mask Detector

Mask Detection

If you like the implemenation or have taken an inspiration do give a star :-)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_fasterrcnn-0.2.0rc2.tar.gz (28.3 kB view details)

Uploaded Source

Built Distribution

pytorch_fasterrcnn-0.2.0rc2-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_fasterrcnn-0.2.0rc2.tar.gz.

File metadata

  • Download URL: pytorch_fasterrcnn-0.2.0rc2.tar.gz
  • Upload date:
  • Size: 28.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for pytorch_fasterrcnn-0.2.0rc2.tar.gz
Algorithm Hash digest
SHA256 c773af6be3a76a415be4a0c2d05f6ad510a6b9f8fad175f1333077c176f67217
MD5 a13417943a883e8c887f593177c4d529
BLAKE2b-256 f741f74665f6ffd65331ce109f24499ec7c03965a04ddf8f89ba930499064626

See more details on using hashes here.

File details

Details for the file pytorch_fasterrcnn-0.2.0rc2-py3-none-any.whl.

File metadata

  • Download URL: pytorch_fasterrcnn-0.2.0rc2-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for pytorch_fasterrcnn-0.2.0rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 829152971369e3dcc542afd8e1f0b783f3cfd461e0fab90701f39ff481724fe4
MD5 129f33054ce63b6fbd00e41e6263bdd8
BLAKE2b-256 be695a1fc51628dceb1c82b8510d70ac623b337e5e38dc94b99dcad2761e38ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page