Skip to main content

Package for calculating Frechet Inception Distance (FID) using PyTorch

Project description

PyPI

FID score for PyTorch

This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR for the original implementation using Tensorflow.

FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network.

Further insights and an independent evaluation of the FID score can be found in Are GANs Created Equal? A Large-Scale Study.

The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. So if you report FID scores in your paper, and you want them to be exactly comparable to FID scores reported in other papers, you should consider using the official Tensorflow implementation.

Installation

Install from pip:

pip install pytorch-fid

Requirements:

  • python3
  • pytorch
  • torchvision
  • pillow
  • numpy
  • scipy

Usage

To compute the FID score between two datasets, where images of each dataset are contained in an individual folder:

python -m pytorch_fid path/to/dataset1 path/to/dataset2

To run the evaluation on GPU, use the flag --device cuda:N, where N is the index of the GPU to use.

Using different layers for feature maps

In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer. As the lower layer features still have spatial extent, the features are first global average pooled to a vector before estimating mean and covariance.

This might be useful if the datasets you want to compare have less than the otherwise required 2048 images. Note that this changes the magnitude of the FID score and you can not compare them against scores calculated on another dimensionality. The resulting scores might also no longer correlate with visual quality.

You can select the dimensionality of features to use with the flag --dims N, where N is the dimensionality of features. The choices are:

  • 64: first max pooling features
  • 192: second max pooling features
  • 768: pre-aux classifier features
  • 2048: final average pooling features (this is the default)

Generating a compatible .npz archive from a dataset

A frequent use case will be to compare multiple models against an original dataset. To save training multiple times on the original dataset, there is also the ability to generate a compatible .npz archive from a dataset. This is done using any combination of the previously mentioned arguments with the addition of the --save-stats flag. For example:

python -m pytorch_fid --save-stats path/to/dataset path/to/outputfile

The output file may then be used in place of the path to the original dataset for further comparisons.

Citing

If you use this repository in your research, consider citing it using the following Bibtex entry:

@misc{Seitzer2020FID,
  author={Maximilian Seitzer},
  title={{pytorch-fid: FID Score for PyTorch}},
  month={August},
  year={2020},
  note={Version 0.3.0},
  howpublished={\url{https://github.com/mseitzer/pytorch-fid}},
}

License

This implementation is licensed under the Apache License 2.0.

FID was introduced by Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler and Sepp Hochreiter in "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium", see https://arxiv.org/abs/1706.08500

The original implementation is by the Institute of Bioinformatics, JKU Linz, licensed under the Apache License 2.0. See https://github.com/bioinf-jku/TTUR.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-fid-0.3.0.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

pytorch_fid-0.3.0-py3-none-any.whl (15.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-fid-0.3.0.tar.gz.

File metadata

  • Download URL: pytorch-fid-0.3.0.tar.gz
  • Upload date:
  • Size: 16.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for pytorch-fid-0.3.0.tar.gz
Algorithm Hash digest
SHA256 1c80d112c9cf5ebcbcc428a0b7ea615c302805ad6780ec29e8e2955ba31571c8
MD5 3a1c8bc4ee37ae5bb385248e9f45f105
BLAKE2b-256 720b09c4ac404e57b91688c97120b4194205c9813b0b9c263469cf28e3d74569

See more details on using hashes here.

File details

Details for the file pytorch_fid-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: pytorch_fid-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 15.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for pytorch_fid-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e1d4fe66441a8dff2a2aca31394e9389fb197dfeff046f2f971f271d4137767
MD5 417053de1f510cc9d32a9e1a268aab75
BLAKE2b-256 dd2be8c875b9380f34c70d4b5d98deaaa8bcac4922388efad08a72cf129118ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page