Temporal fusion transformer for timeseries forecasting
Project description
Timeseries forecasting with Pytorch
Install with
pip install pytorch_forecasting
Available models
Usage
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer
# load data
data = ...
# define dataset
max_encode_length = 36
max_prediction_length = 6
training_cutoff = "YYYY-MM-DD" # day for cutoff
training = TimeSeriesDataSet(
data[lambda x: x.date < training_cutoff],
time_idx= ...,
target= ...,
# weight="weight",
group_ids=[ ... ],
max_encode_length=max_encode_length,
max_prediction_length=max_prediction_length,
static_categoricals=[ ... ],
static_reals=[],
time_varying_known_categoricals=[ ... ],
time_varying_known_reals=[
"time_idx",
"price_regular",
"price_actual",
"discount",
"avg_population_2017",
"avg_yearly_household_income_2017",
"discount_in_percent",
],
time_varying_unknown_categoricals=[],
time_varying_unknown_reals=["volume", "log_volume", "industry_volume", "soda_volume", "avg_max_temp"],
constant_fill_strategy={"volume": 0},
dropout_categoricals=["sku"],
)
validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.data_index.time.max() + 1)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min")
trainer = pl.Trainer(
max_epochs=10,
gpus=0,
gradient_clip_val=0.1,
early_stop_callback=early_stop_callback,
)
tft = TemporalFusionTransformer.from_dataset(training)
print(f"Number of parameters in network: {tft.size()/1e3:.1f}k")
trainer.fit(
tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pytorch_forecasting-0.1.0.tar.gz
(23.7 kB
view details)
Built Distribution
File details
Details for the file pytorch_forecasting-0.1.0.tar.gz
.
File metadata
- Download URL: pytorch_forecasting-0.1.0.tar.gz
- Upload date:
- Size: 23.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.9 CPython/3.7.7 Darwin/19.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d571531efe647f21423b7c2c4117efc61df58d27d225683f8d60a60618eca6bb |
|
MD5 | e5940d159dd89eeb6f908f4bc53f0393 |
|
BLAKE2b-256 | 47a2df2a22fe995f64494ee4bc157fb1f9c254adb1d90182bfbc50cdc8fb08ea |
File details
Details for the file pytorch_forecasting-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pytorch_forecasting-0.1.0-py3-none-any.whl
- Upload date:
- Size: 25.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.9 CPython/3.7.7 Darwin/19.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 512f167c75a7a903d22d39303dda73f8e74fd72513d6774e9e579913954ba8a0 |
|
MD5 | e6b6e83a4e089df49eb3716605c01b91 |
|
BLAKE2b-256 | a2abc0049cfb4edb09cd251560caee1cb78331959dc4d646f421a1eff6ac8d24 |