Skip to main content

Forecasting timeseries with PyTorch - dataloaders, normalizers, metrics and models

Project description

Our article on Towards Data Science introduces the package and provides background information.

Pytorch Forecasting aims to ease timeseries forecasting with neural networks for real-world cases and research alike. Specifically, the package provides

  • A timeseries dataset class which abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc.
  • A base model class which provides basic training of timeseries models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots
  • Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities
  • Multi-horizon timeseries metrics
  • Ranger optimizer for faster model training
  • Hyperparameter tuning with optuna

The package is built on pytorch-lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.

Installation

If you are working windows, you need to first install PyTorch with

pip install torch -f https://download.pytorch.org/whl/torch_stable.html.

Otherwise, you can proceed with

pip install pytorch-forecasting

Alternatively, you can install the package via conda

conda install pytorch-forecasting -c conda-forge

If you do not have pytorch installed, install it is recommended to install it first from the pytorch channel

conda install pytorch -c pytorch

Documentation

Visit https://pytorch-forecasting.readthedocs.io to read the documentation with detailed tutorials.

Available models

Usage

import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor

from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer

# load data
data = ...

# define dataset
max_encode_length = 36
max_prediction_length = 6
training_cutoff = "YYYY-MM-DD"  # day for cutoff

training = TimeSeriesDataSet(
    data[lambda x: x.date <= training_cutoff],
    time_idx= ...,
    target= ...,
    group_ids=[ ... ],
    max_encode_length=max_encode_length,
    max_prediction_length=max_prediction_length,
    static_categoricals=[ ... ],
    static_reals=[ ... ],
    time_varying_known_categoricals=[ ... ],
    time_varying_known_reals=[ ... ],
    time_varying_unknown_categoricals=[ ... ],
    time_varying_unknown_reals=[ ... ],
)


validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.index.time.max() + 1, stop_randomization=True)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)


early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
    max_epochs=100,
    gpus=0,
    gradient_clip_val=0.1,
    limit_train_batches=30,
    callbacks=[lr_logger, early_stop_callback],
)


tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,
    hidden_size=32,
    attention_head_size=1,
    dropout=0.1,
    hidden_continuous_size=16,
    output_size=7,
    loss=QuantileLoss(),
    log_interval=2,
    reduce_on_plateau_patience=4
)
print(f"Number of parameters in network: {tft.size()/1e3:.1f}k")

# find optimal learning rate
res = trainer.lr_find(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader, early_stop_threshold=1000.0, max_lr=0.3,
)

print(f"suggested learning rate: {res.suggestion()}")
fig = res.plot(show=True, suggest=True)
fig.show()

trainer.fit(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_forecasting-0.5.0.tar.gz (63.3 kB view details)

Uploaded Source

Built Distribution

pytorch_forecasting-0.5.0-py3-none-any.whl (69.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_forecasting-0.5.0.tar.gz.

File metadata

  • Download URL: pytorch_forecasting-0.5.0.tar.gz
  • Upload date:
  • Size: 63.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.2 CPython/3.7.9 Linux/5.4.0-1026-azure

File hashes

Hashes for pytorch_forecasting-0.5.0.tar.gz
Algorithm Hash digest
SHA256 4b4b455504842a84be9b16cc9921c7a1756dd6798af6535d22164d64b0e8ef6e
MD5 e089cc08f875e6dd9bfbee231d97a9f9
BLAKE2b-256 097d7493d7d91a6d728fc80546bff21abc4d10649d53b459de254e2a8cbda04d

See more details on using hashes here.

File details

Details for the file pytorch_forecasting-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_forecasting-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2dff4bf39fcfd1e26ec4c9f4baed3530fd1773eeff78af7b9ddcfba61ff93dbe
MD5 27a5f0670d0dfac7bd79e0fe6c8e48c4
BLAKE2b-256 49ab318b7dd6101ef964f4f4d2c5b69758e59e8816bb662268ed508852ed78dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page