Skip to main content

pytorch implementation of histogram matching

Project description

pytorch-histogram-matching

Installation

pip install pytorch_histogram_matching

Usage

from pytorch_histogram_matching import Histogram_Matching

import torch
dst = torch.randint(0, 256, (8, 3, 512,512)).cuda() / 255.
ref = torch.randint(0, 256, (8, 3, 512,512)).cuda() / 255.

dst.requires_grad = True
ref.requires_grad = True

HM = Histogram_Matching(differentiable=True)
rst = HM(dst, ref)

Test

python test.py

img

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file pytorch_histogram_matching-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_histogram_matching-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4381b3037f24dd4611fc743f3bb19825df54842779f576597bafe7f659c652e5
MD5 2122ed84853b272a84ef18acc9668433
BLAKE2b-256 bdd920297bcc92d9577a776103c79a822dac30398f629bda04ba7014a1683811

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page