Skip to main content

PyTorch Implementation of INFERNO

Project description

PyTorch INFERNO

Setup

[install torch>=1.7 according to CUDA version]
pip install nbdev fastcore numpy pandas fastprogress matplotlib>=3.0.0 seaborn scipy
git clone git@github.com:GilesStrong/pytorch_inferno.git
cd pytorch_inferno
pip install -e .
nbdev_install_git_hooks

Overview

Library developed and testing in nbs directory.

Experiments run in experiments directory.

Use nbdev_build_lib to export code to library located in pytorch_inferno. This overwrites any changes in pytorch_inferno, i.e. only edit the notebooks.

Results

title

https://docs.google.com/spreadsheets/d/1feR_prOMzlNAfuMtB7JyhSVaTM32wvdnt72aqcWzyy4/edit?usp=sharing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_inferno-0.0.1.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

pytorch_inferno-0.0.1-py3-none-any.whl (17.8 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_inferno-0.0.1.tar.gz.

File metadata

  • Download URL: pytorch_inferno-0.0.1.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.4.2 requests/2.24.0 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for pytorch_inferno-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e1bb901e791f91efae82a2c00fad853f73e42afb5a0ef08f075e153b9155f900
MD5 09e1eea40f65de61258b4d02d04fdc65
BLAKE2b-256 a3d7d7f902d5c381a6bdc6b1b6d723bb2d81a3f934e54dba64503797c9b62409

See more details on using hashes here.

File details

Details for the file pytorch_inferno-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pytorch_inferno-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 17.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.4.2 requests/2.24.0 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for pytorch_inferno-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 67bc8dc4b9a5c8abce4f5e56a7327a5f66a4e4c814a10cdaebc6c76a0c3d82b9
MD5 dee0204a9509ab619f02fc539ebc4bb3
BLAKE2b-256 e23cfc9e1248c728f00ae7032b215fa8fe9aec3aaf6b4418a9b252fd12c7af5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page