PyTorch Kubeflow Pipeline
Project description
PyTorch Kubeflow Pipeline Components
PyTorch Kubeflow Pipeline Components provides an SDK and a set of components that lets you build kubeflow pipelines using PyTorch. You can use the predefined components in this repository to build your pipeline using the Kubeflow Pipelines SDK.
Installation
Requirements
Python >= 3.6 Kubeflow cluster setuo (on-prem or in any of the Clouds)
Install latest release
Use the following command to install PyTorch Pipeline Components from PyPI.
pip install -U pytorch-kfp-components
Install from source
Use the following commands to install PyTorch Kubeflow Pipeline Components from GitHub.
git clone https://github.com/kubeflow/pipelines.git
pip install pipelines/components/PyTorch/pytorch_kfp_components/.
Running the tests
Run the following command
pip install tox
cd ./components/PyTorch/pytorch-kfp-components/
tox -rvve py38
Samples
For running the samples follow the instruction mentioned as below
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch-kfp-components-0.1.0.tar.gz
.
File metadata
- Download URL: pytorch-kfp-components-0.1.0.tar.gz
- Upload date:
- Size: 18.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab2ddf2f4bb9430a9cfb7d1d4f9637f3ad9ff63b1a09ba13618d499825c01e84 |
|
MD5 | aa6cc4391bed8dd983effb123e981069 |
|
BLAKE2b-256 | 7d535b02faf9b374d0db81a77e898791dd0597b26f7f3fab38162783b10cd254 |
File details
Details for the file pytorch_kfp_components-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pytorch_kfp_components-0.1.0-py3-none-any.whl
- Upload date:
- Size: 30.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 503d473466d8524a68cc4fdec6b68adc160984ca54abe8fca5551396c2df8395 |
|
MD5 | 84048f96285e4bbebb73c6632797b549 |
|
BLAKE2b-256 | b8646730c87d901a5b6c57ce3c32dabc56ee74ae604892c8a452c164bcf193a5 |