PyTorch Lightning Bolts is a community contribution for ML researchers.
Project description
PyTorch Lightning Bolts
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Trending contributors
Continuous Integration
System / PyTorch ver. | 1.4 (min. req.) | 1.5 (latest) |
---|---|---|
Linux py3.6 / py3.7 / py3.8 | ||
OSX py3.6 / py3.7 / py3.8 | ||
Windows py3.6 / py3.7 / py3.8 | wip | wip |
Install
pip install pytorch-lightning-bolts
Docs
What is Bolts
Bolts is a Deep learning research and production toolbox of:
- SOTA pretrained models.
- Model components.
- Callbacks.
- Losses.
- Datasets.
Main Goals of Bolts
The main goal of Bolts is to enable rapid model idea iteration.
Example 1: Finetuning on data
from pl_bolts.models.self_supervised import SimCLR
from pl_bolts.models.self_supervised.simclr.transforms import SimCLRTrainDataTransform, SimCLREvalDataTransform
import pytorch_lightning as pl
# data
train_data = DataLoader(MyDataset(transforms=SimCLRTrainDataTransform(input_height=32)))
val_data = DataLoader(MyDataset(transforms=SimCLREvalDataTransform(input_height=32)))
# model
model = SimCLR(pretrained='imagenet2012')
# train!
trainer = pl.Trainer(gpus=8)
trainer.fit(model, train_data, val_data)
Example 2: Subclass and ideate
from pl_bolts.models import ImageGPT
from pl_bolts.self_supervised import SimCLR
class VideoGPT(ImageGPT):
def training_step(self, batch, batch_idx):
x, y = batch
x = _shape_input(x)
logits = self.gpt(x)
simclr_features = self.simclr(x)
# -----------------
# do something new with GPT logits + simclr_features
# -----------------
loss = self.criterion(logits.view(-1, logits.size(-1)), x.view(-1).long())
logs = {"loss": loss}
return {"loss": loss, "log": logs}
Who is Bolts for?
- Corporate production teams
- Professional researchers
- Ph.D. students
- Linear + Logistic regression heroes
I don't need deep learning
Great! We have LinearRegression and LogisticRegression implementations with numpy and sklearn bridges for datasets! But our implementations work on multiple GPUs, TPUs and scale dramatically...
Check out our Linear Regression on TPU demo
from pl_bolts.models.regression import LinearRegression
from pl_bolts.datamodules import SklearnDataModule
# sklearn dataset
X, y = load_boston(return_X_y=True)
loaders = SklearnDataModule(X, y)
model = LinearRegression(input_dim=13)
trainer = pl.Trainer(num_tpu_cores=1)
trainer.fit(model, loaders.train_dataloader(), loaders.val_dataloader())
trainer.test(test_dataloaders=loaders.test_dataloader())
Is this another model zoo?
No!
Bolts is unique because models are implemented using PyTorch Lightning and structured so that they can be easily subclassed and iterated on.
For example, you can override the elbo loss of a VAE, or the generator_step of a GAN to quickly try out a new idea. The best part is that all the models are benchmarked so you won't waste time trying to "reproduce" or find the bugs with your implementation.
Team
Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pytorch-lightning-bolts-0.1.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8454fa2ec710c9edb5d27a2ff7303d8088bc393ba5967e73a29c100fa05579f5 |
|
MD5 | adf971e4e987c965e25df2365dedfc21 |
|
BLAKE2b-256 | 030e845c84754b1d177caaaf12632ced764c0e07297976de7f392170a0d168b1 |
Hashes for pytorch_lightning_bolts-0.1.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfa672ae71ce67862de86620d4756fe23a905c4536162000e782b2f1822f1192 |
|
MD5 | 2396188b24720992771d557b4d4a9978 |
|
BLAKE2b-256 | 98275376b533536bf095f0e2d10c7fc5629b1ee324d8e0e41edc942b3326b6bd |