Skip to main content

The Mighty Monitor Trainer for your pytorch models.

Project description

# pytorch-mighty

The Mighty Monitor Trainer for your pytorch models.

### Quick start

  1. Install [pytorch](https://pytorch.org/)

  2. $ pip install pytorch-mighty

  3. $ visdom -port 8097 - start visdom server on port 8097

  4. In a separate terminal, run python examples.py

  5. Navigate to http://localhost:8097 to see the training progress.

  6. Check-out more examples on [http://85.217.171.57:8097](http://85.217.171.57:8097/). Give your browser a few minutes to parse the json data.

### Articles, implemented in the package

  1. Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
  2. Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.
  3. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
  4. Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.

### Projects that use pytorch-mighty

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-mighty-0.1.0.tar.gz (34.4 kB view details)

Uploaded Source

File details

Details for the file pytorch-mighty-0.1.0.tar.gz.

File metadata

  • Download URL: pytorch-mighty-0.1.0.tar.gz
  • Upload date:
  • Size: 34.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pytorch-mighty-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fbbe6a94eeea31f93e1259b2f1dc24413f4b0470f351f03cac47192a1ff3d1d8
MD5 b989bbf9c9f749e55096c6ea27168c73
BLAKE2b-256 0165ecaa13a2b76dc3076238352e046b81a7467329bd973218cd459923d50d5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page