Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules/loss functions/optimizers

  • Ultra-efficient trainer and dataloader that allows you to take full advantage of GPU

## Installation

sudo pip3 install pytorch_modules

or

sudo python3 setup.py install

## Usage

### pytorch_modules.utils

Includes a variety of utils for pytorch model training. See [woodsgao/pytorch_segmentation](https://github.com/woodsgao/pytorch_segmentation) as a tutorial.

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.backbones

This module includes a series of modified backbone networks.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model.stages[0](inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.3.5.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.3.5-py2.py3-none-any.whl (38.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.3.5.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.3.5.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.5.tar.gz
Algorithm Hash digest
SHA256 5a2d3d5dcdea3d8021036e5fbb5dbe7cc2cbd36913c025b837e971724d6f2bc6
MD5 d2ce5f3f1a173d5d7f6bd3376bbd4503
BLAKE2b-256 4d809cbdfbb0978b522bf542876f57ca0281e21dfea53549c4f1865b8ca280b8

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.3.5-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.3.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 82648653e881a23c7a2790ab4a61d27fbd7c04fc1cd7800fe06e3892e4f22e35
MD5 831763cf12c582d81ae53a9708b94e1f
BLAKE2b-256 cac56bc94da943e1aa82b9fa38324b4ba59fb8ef2d71fd6b9512b62c147af3d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page