Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.1.2.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.1.2-py3-none-any.whl (29.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_modules-0.1.2.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.1.2.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.1.2.tar.gz
Algorithm Hash digest
SHA256 d7e19cde3cbf38992bcbc752b29aa422837e05a641d37241251dcf9d2e4ca55f
MD5 5eb69bb2747294d7d90402dd32e8f8e1
BLAKE2b-256 710c9144adcec3c441c477d62e880bc04198ae5bbe1dcac2ea033e3eb07b4fdd

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 29.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9ae0398d7c1dd3c693141e8b7c810d80d2392fc9f407287945f28e4dcd09195e
MD5 067e43ea55f8872719a595fe7a66cecc
BLAKE2b-256 f434e0cc2603fb06bc68f34e646efb734665c2100945fc277e73a9b4bb814a8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page