Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.0.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.0-py3-none-any.whl (34.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_modules-0.2.0.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.0.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.0.tar.gz
Algorithm Hash digest
SHA256 cab1f6b7c941d59b1d6130613209eda8aa8c9db84b03b6e5568399db6961ec91
MD5 4c7894ebc7563349f37fe9933cfa07b1
BLAKE2b-256 ca65b9b38ee1b30d0d7f279513feeffc4ec6305e510dda1ff29debcfd71c7692

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 34.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4e0deb3486d18d015f566948fbac1f97e5d999edf00ac107c11b66a467447f02
MD5 a162e9cb90b5678d483cd50633b9f2fd
BLAKE2b-256 346bd5260cda72cc91d3bc96db3fc151bec044e377567336e80c8ce88628ae0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page