Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.2.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.2-py2.py3-none-any.whl (34.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.2.2.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.2.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.2.tar.gz
Algorithm Hash digest
SHA256 7fe223e03cf0680ee0cf510f274e2ccb634c8102071f10e8c548570fb0ab8100
MD5 d1454a8fe2020053f18bc69d41819ef0
BLAKE2b-256 d0f72d4263c692ce3f35b11317a12e3d68a370af1b40928dbe0363155eabdcdb

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.2-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 34.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 39c79fc8ddb0f00909ccb05ffe10af1145a3f3d154f1b99ae5e5ce8ff8047211
MD5 b0b2500b9b00250a08e6e5ca8d1716ba
BLAKE2b-256 0a936454d72804513bab1502a12c38079f7f083339d69eeb531f5e77813343f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page