A neural network toolkit.
Project description
# pytorch_modules
## Introduction
A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.
## Features
Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW
Ultra-efficient dataloader that allows you to take full advantage of GPU
High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))
## Installation
sudo pip3 install pytorch_modules
## Usage
### pytorch_modules.nn
This module contains a variety of neural network layers, modules and loss functions.
import torch from pytorch_modules.nn import ResBlock
# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)
### pytorch_modules.augments
See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.
### pytorch_modules.backbones
This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.
import torch from pytorch_modules.backbones import ResNet
# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)
### pytorch_modules.datasets
This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.
pytorch_modules.datasets.ClassificationDataset > [woodsgao/pytorch_classification](https://github.com/woodsgao/pytorch_classification)
pytorch_modules.datasets.SegmentationDataset > [woodsgao/pytorch_segmentation](https://github.com/woodsgao/pytorch_segmentation)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch_modules-0.2.2.tar.gz
.
File metadata
- Download URL: pytorch_modules-0.2.2.tar.gz
- Upload date:
- Size: 18.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fe223e03cf0680ee0cf510f274e2ccb634c8102071f10e8c548570fb0ab8100 |
|
MD5 | d1454a8fe2020053f18bc69d41819ef0 |
|
BLAKE2b-256 | d0f72d4263c692ce3f35b11317a12e3d68a370af1b40928dbe0363155eabdcdb |
File details
Details for the file pytorch_modules-0.2.2-py2.py3-none-any.whl
.
File metadata
- Download URL: pytorch_modules-0.2.2-py2.py3-none-any.whl
- Upload date:
- Size: 34.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39c79fc8ddb0f00909ccb05ffe10af1145a3f3d154f1b99ae5e5ce8ff8047211 |
|
MD5 | b0b2500b9b00250a08e6e5ca8d1716ba |
|
BLAKE2b-256 | 0a936454d72804513bab1502a12c38079f7f083339d69eeb531f5e77813343f1 |