Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.3.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.3-py2.py3-none-any.whl (34.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.2.3.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.3.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.3.tar.gz
Algorithm Hash digest
SHA256 915e57cee7a3c181733fc243065028eb190aacb642797c2fd4124df73d980164
MD5 9ded030de1616a9619e5d0020d89751b
BLAKE2b-256 5c912e517060bb4d4fb6bfa7b1d224aa6da1981a7a0f088ddeae6c73ead0de17

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.3-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.9.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 77d8c77660625b3b3df694790bd5f9d19f5e9afbfc3d2985f3fe0f8923d58bc2
MD5 c4596404f7bdab28e97fa346890ac392
BLAKE2b-256 3ebc9d10caf91165945d9e6126adeb550a55cba4199495e75d3509d936663af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page