Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.4.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.4-py2.py3-none-any.whl (35.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.2.4.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.4.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.4.tar.gz
Algorithm Hash digest
SHA256 cd5c9eb538b872e04972bd12ddf042fc1007906bb6ad6f4868b4a4fd69104d63
MD5 a310772ddb938fd69d3a5a54a0116aa7
BLAKE2b-256 0dbaed40f1ad7b676980a602720911bc11609455b903a66a7852f1e6e29bcc4f

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.4-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 35.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 388f930a7fb09b3952d9143ee5b1e722b63cb0e2cbb3e485f4b0d5e110e0c971
MD5 b745245aceafd9b9c4822441decc4eab
BLAKE2b-256 cd04e6769f5ee04e1cc833d02fd97a1ec03db352a4ddc5354c990d3f5f7a693a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page