Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.5.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.5-py3-none-any.whl (35.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_modules-0.2.5.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.5.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.5.tar.gz
Algorithm Hash digest
SHA256 b47a5cc8c4e581c983bf22b9bc5e1d05b2721a104efa3bdb99b659aed251cf39
MD5 535fe740da5c90425753aaf479d77eb9
BLAKE2b-256 e0f6e3044febc9776c4ad4dc32aabacf247b74a0adb2e00906c5186ebc310522

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 35.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1c08ddcfd1958a5fbfd579b087df812de2f0b0dc781edaada5e09a7456f3968a
MD5 c8a34035a51fb00f55e75a4ab020838d
BLAKE2b-256 f61c92717919596d3c7001e2d28b3c57a5ce414cb23ad20f339f3a2251394015

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page