Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.6.tar.gz (19.3 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.6-py3-none-any.whl (38.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_modules-0.2.6.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.6.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.6.tar.gz
Algorithm Hash digest
SHA256 21583bdc5b53518ba125ce28f022200e5282e8ecad05ff96b12b6854b0a62050
MD5 f9d8ffdcd932440e9a260f6681583858
BLAKE2b-256 e92b9dc7f8aa2813abdad00b9b3f91550076b9ec755b0f632107afdffae16739

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 38.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 10f71cad60efd38c0e364e33c6827dc735abea3cb4519f1de7301c59f9397ac1
MD5 b9b93cba59b2409d4b26b16cb79ea647
BLAKE2b-256 959e905cccd78214ed924b260af21bab0479c3cfc375750003422b83cec3102e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page