Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules, such as EfficientNet, ResNet, SENet, Xception, DenseNet, FocalLoss, AdaboundW

  • Ultra-efficient dataloader that allows you to take full advantage of GPU

  • High performance and multifunctional data augmentation(See [woodsgao/image_augments](https://github.com/woodsgao/image_augments))

## Installation

sudo pip3 install pytorch_modules

## Usage

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.augments

See [woodsgao/image_augments](https://github.com/woodsgao/image_augments) for more details.

### pytorch_modules.backbones

This module includes a series of modified backbone networks, such as EfficientNet, ResNet, SENet, Xception, DenseNet.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model(inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.2.7.tar.gz (19.3 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.2.7-py3-none-any.whl (38.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_modules-0.2.7.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.2.7.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.7.tar.gz
Algorithm Hash digest
SHA256 f827b68b7b299992bc9109e790643f03fafb4c1730c5ad613a44bc9522becc45
MD5 740e7aaf8859cda4c46f780705ccf2af
BLAKE2b-256 63a7a489c1e229278cf98d646b7bc916b341c9a5155d2c47b49dee32abea9000

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 38.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 73fdf9ec0c73dae870d7ead19a0c1a23ab73dd574e814ccd671a55830b8ca3ff
MD5 f2981aad5863c21177c1cfdfbfc57da2
BLAKE2b-256 29e7f6396aa23d7ec41541d12ede4686dac86d0540876f90f9df56dcc1188389

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page