Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules/loss functions/optimizers

  • Ultra-efficient trainer and dataloader that allows you to take full advantage of GPU

## Installation

sudo pip3 install pytorch_modules

or

sudo python3 setup.py install

## Usage

### pytorch_modules.utils

Includes a variety of utils for pytorch model training. See [woodsgao/pytorch_segmentation](https://github.com/woodsgao/pytorch_segmentation) as a tutorial.

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.backbones

This module includes a series of modified backbone networks.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model.stages[0](inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.3.2.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.3.2-py2.py3-none-any.whl (38.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.3.2.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.3.2.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.2.tar.gz
Algorithm Hash digest
SHA256 72f95dc730b9c23ef974054be6f519e5a7238d1639616dc32b1ec0c647f05cf7
MD5 5866e45529ce534ed19c9e48367ec5ba
BLAKE2b-256 8608207ee526451e73503cf01ddff53d379337b97604fa1319207c1d39031af2

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.3.2-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.3.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 38.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7a7fddffec17076c794a3631eb1ad269a6cfe44271974406763b23a4aef78d64
MD5 26f780c36f6b70ac11eb39a14a937d41
BLAKE2b-256 0212df9c1b145b724340f4c615218c0201f23eefb22eddc18b6ab54eb9039a4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page