Skip to main content

A neural network toolkit.

Project description

# pytorch_modules

## Introduction

A neural network toolkit built on pytorch/opencv/numpy that includes neural network layers, modules, loss functions, optimizers, data loaders, data augmentation, etc.

## Features

  • Advanced neural network modules/loss functions/optimizers

  • Ultra-efficient trainer and dataloader that allows you to take full advantage of GPU

## Installation

sudo pip3 install pytorch_modules

or

sudo python3 setup.py install

## Usage

### pytorch_modules.utils

Includes a variety of utils for pytorch model training. See [woodsgao/pytorch_segmentation](https://github.com/woodsgao/pytorch_segmentation) as a tutorial.

### pytorch_modules.nn

This module contains a variety of neural network layers, modules and loss functions.

import torch from pytorch_modules.nn import ResBlock

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) block = ResBlock(8, 16) outputs = block(inputs)

### pytorch_modules.backbones

This module includes a series of modified backbone networks.

import torch from pytorch_modules.backbones import ResNet

# NCHW tensor inputs = torch.ones([8, 8, 224, 224]) model = ResNet(32) outputs = model.stages[0](inputs)

### pytorch_modules.datasets

This module includes a series of dataset classes integrated from pytorch_modules.datasets.BasicDataset which is integrated from torch.utils.data.Dataset . The loading method of pytorch_modules.datasets.BasicDataset is modified to cache data with LMDB to speed up data loading. This allows your gpu to be fully used for model training without spending a lot of time on data loading and data augmentation. Please see the corresponding repository for detailed usage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_modules-0.3.3.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

pytorch_modules-0.3.3-py2.py3-none-any.whl (38.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorch_modules-0.3.3.tar.gz.

File metadata

  • Download URL: pytorch_modules-0.3.3.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.3.tar.gz
Algorithm Hash digest
SHA256 c8dd51b2747dc32d2cf4d363651e2b0ae23b4f176de17720f007f39558690948
MD5 c2b4813b479127b50f8a44e08bf22c6e
BLAKE2b-256 1f50af0cfc1a84ec74be38cf55a2f0570a2a609c145e56335459772d6bf15d62

See more details on using hashes here.

File details

Details for the file pytorch_modules-0.3.3-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorch_modules-0.3.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.2

File hashes

Hashes for pytorch_modules-0.3.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 29115f14c90e8646f97a6ee19779513791cb855911898f78f9183284f979ffb1
MD5 85bda1677b141e0d9d8892d151177496
BLAKE2b-256 887b4555d6dd7cc4c68ed9953d97e224d12fbbc1dee20adb9592f91f2fd525ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page