Skip to main content

No project description provided

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

Document: https://pytorch-partial-crf.readthedocs.io/

How to use

Install

pip install pytorch-partial-crf

Use CRF

import torch
from pytorch_partial_crf import CRF

# Create 
num_tags = 6
model = CRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [1, 3, 4, 2, 1],
    [1, 0, 2, 4, 4],
])

# Computing negative log likelihood
model(emissions, tags)

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing negative log likelihood
model(emissions, tags)

Use Marginal CRF

import torch
from pytorch_partial_crf import MarginalCRF

# Create 
num_tags = 6
model = MarginalCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set probability tags
marginal_tags = torch.Tensor([
        [
            [0.2, 0.2, 0.2, 0.1, 0.1, 0.2],
            [0.8, 0.0, 0.0, 0.1, 0.1, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
            [0.3, 0.0, 0.0, 0.1, 0.6, 0.0],
        ],
        [
            [0.2, 0.2, 0.2, 0.1, 0.1, 0.2],
            [0.8, 0.0, 0.0, 0.1, 0.1, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
            [0.3, 0.0, 0.0, 0.1, 0.6, 0.0],
        ],
        [
            [0.2, 0.2, 0.2, 0.1, 0.1, 0.2],
            [0.8, 0.0, 0.0, 0.1, 0.1, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
            [0.3, 0.0, 0.0, 0.1, 0.6, 0.0],
        ],
])
# Computing negative log likelihood
model(emissions, marginal_tags)

Decoding

Viterbi decode

model.viterbi_decode(emissions)

Restricted viterbi decode

possible_tags = torch.randn(batch_size, sequence_length, num_tags)
possible_tags[possible_tags <= 0] = 0 # `0` express that can not pass.
possible_tags[possible_tags > 0] = 1  # `1` express that can pass.
possible_tags = possible_tags.byte()
model.restricted_viterbi_decode(emissions, possible_tags)

Marginal probabilities

model.marginal_probabilities(emissions)

Contributing

We welcome contributions! Please post your requests and comments on Issue.

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.2.1.tar.gz (6.7 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page