Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

# Computing log likelihood
batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.1-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.1.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b38f24a0b4b0fc8eecc1e6ec3737dc9ad653819f9d5e8741ae960bfd7b1265f4
MD5 65a9ef848fe40e38684e2998e6d12b93
BLAKE2b-256 68e9c5f79267fe26a4296665d61f1b409a2b910f99b4bf86890da54568366e89

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d8e399a87da42cce82997d04dba34324f3cc39c792445dd88297614e5f7151db
MD5 8909930c1f0dc59cf0c7ab85362478e5
BLAKE2b-256 2d2be632479a54f4bac491f4e2dc9cad5509d903fe51680bb4c8c25de6d9e4cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page