Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.2.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.2-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.2.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.2.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.2.tar.gz
Algorithm Hash digest
SHA256 607cc3a8b2c3c2db2eda5a7b374055bf3f10d4e614a2d56c833cb81be2c3dc37
MD5 e6fdddbb1dc0daf553fa9d271eb0c49a
BLAKE2b-256 dd8989d8e4870824fce88f5ff9b09e67b479d66bd0917d3ac1880c292049c200

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4b67a6e246fdfc13f096f9014852b16170f083799bfe42c04cfa7de93f0ca5a0
MD5 6abee622e6f6059f1ce1941b36272199
BLAKE2b-256 53c8b8174965c99a07a3b30841aaf14d87a7885284c4c4645076e492d272d796

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page