Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.3.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.3-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.3.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.3.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.3.tar.gz
Algorithm Hash digest
SHA256 8d95474c58b64874157f4b07bf85840b2942d66d2d8fea5fd4eef965a2d04c6d
MD5 bbff596538b6c08fa034a6cc397f68f6
BLAKE2b-256 c4a3d464f52baaa025d1bad9f85fccc27cfb4f2f1f538ff486d8063bc7da5f85

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a3fb64bb7f341ed651f39f3559e60ab752161574492bd2b124f01b59f51f4009
MD5 5d19b189ee1c1d127e453594e74faf1f
BLAKE2b-256 0e845de613e61db1949d3be0c7f357dac0ae4478bbabba2881772bdaacef69f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page