Skip to main content

"Partial/Fuzzy Conditional random field in PyTorch."

Project description

pytorch-partial-crf

Partial/Fuzzy conditional random field in PyTorch.

How to use

Install

pip install pytorch-partial-crf

Use partial CRF

import torch
from pytorch_partial_crf import PartialCRF

# Create 
num_tags = 6
model = PartialCRF(num_tags)

batch_size, sequence_length = 3, 5
emissions = torch.randn(batch_size, sequence_length, num_tags)

# Set unknown tag to -1
tags = torch.LongTensor([
    [1, 2, 3, 3, 5],
    [-1, 3, 3, 2, -1],
    [-1, 0, -1, -1, 4],
])

# Computing log likelihood
model(emissions, tags)

License

MIT

References

The implementation is based on AllenNLP CRF module and pytorch-crf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-partial-crf-0.0.4.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

pytorch_partial_crf-0.0.4-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-partial-crf-0.0.4.tar.gz.

File metadata

  • Download URL: pytorch-partial-crf-0.0.4.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch-partial-crf-0.0.4.tar.gz
Algorithm Hash digest
SHA256 a538a8376c724708d0168d84c212b3d374de16eba28db85282129ce46b24f25b
MD5 865233833b3a34ece629a229077cc1a9
BLAKE2b-256 c7f8d661a00bb0f0c25db070a71db435cd43fadb871f2f73aff2ff66f1c0fd10

See more details on using hashes here.

File details

Details for the file pytorch_partial_crf-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: pytorch_partial_crf-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pytorch_partial_crf-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f25b4b206fc3453740599f0ed7757e60819e40c4ede2183fac598390fb24aff7
MD5 3ab89790e3ffb10c8ab40bcbb96f7ea2
BLAKE2b-256 77bbba3dc2c761d533d24a848e4f03fe99e55aa71729db07477d23e9ee4e689d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page